精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=x2-x+c定义在区间[0,1]上,x1,x2

[0,1],且x1≠x2,求证:

(1)f(0)=f(1);

(2)|f(x2)-f(x1)|<|x1-x2|.

【答案】(1)见解析; (2)见解析

【解析】

(1)直接计算f(0)和f(1)即可;

(2)由于|f(x2)﹣f(x1)|=|x2﹣x1||x2+x1﹣1|.故只要证明|x2+x1﹣1|<1即可.

(1)∵f(0)=c,f(1)=c,∴f(0)=f(1).

(2)|f(x2)-f(x1)|=|x-x2+c-x+x1-c|=|x2-x1||x2+x1-1|.

∵0≤x1≤1,0≤x2≤1,x1≠x2,∴0<x1+x2<2.

∴-1<x1+x2-1<1.∴|x2+x1-1|<1.

∴|f(x2)-f(x1)|<|x1-x2|.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2sin2x+cos(2x﹣ ).
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)求f(x)在(0, )上的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆C: + =1(a>b>0)的离心率为 ,过左焦点任作直线l,交椭圆的上半部分于点M,当l的斜率为 时,|FM|=
(1)求椭圆C的方程;
(2)椭圆C上两点A,B关于直线l对称,求△AOB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,过其右焦点F且与x轴垂直的直线交椭圆C于P,Q两点,椭圆C的右顶点为R,且满足.

(1)求椭圆C的方程;

(2)若斜率为k(其中)的直线l过点F,且与椭圆交于点A,B,弦AB的中点为M,直线OM与椭圆交于点C,D,求四边形ACBD面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点分别为 交于O,A两点(O为坐标原点),且

求抛物线的方程;

过点O的直线交的下半部分于点M,交的左半部分于点N,点,求面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某渔业公司今年初用98万元购进一艘渔船用于捕捞,第一年需各种费用12

元,从第二年开始包括维修费在内,每年所需费用均比上一年增加4万元,该船每年捕捞的

总收入为50万元.

1)该船捕捞几年开始盈利(即总收入减去成本及所有费用之差为正值)

2)该船捕捞若干年后,处理方案有两种:

当年平均盈利达到最大值时,以26万元的价格卖出;

当盈利总额达到最大值时,以8万元的价格卖出.问哪一种方案较为合算,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2 sin(ax﹣ )cos(ax﹣ )+2cos2(ax﹣ )(a>0),且函数的最小正周期为
(Ⅰ)求a的值;
(Ⅱ)求f(x)在[0, ]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】闽越水镇是闽侯县打造闽都水乡文化特色小镇核心区,该小镇有一块1800平方米的矩形地块,开发商准备在中间挖出三个矩形池塘养闽侯特色金鱼,挖出的泥土堆在池塘四周形成基围(阴影部分所示)种植柳树,形成柳中观鱼特色景观.假设池塘周围的基围宽均为2米,如图,设池塘所占的总面积为平方米.

(1)试用表示a及

(2)当取何值时,才能使得最大?并求出的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4-5:不等式选讲]
设函数f(x)=|2x+2|﹣|x﹣2|.
(Ⅰ)求不等式f(x)>2的解集;
(Ⅱ)若x∈R,f(x)≥t2 t恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案