精英家教网 > 高中数学 > 题目详情
6.已知t>0,设函数f(x)=x3-$\frac{3(t+1)}{2}$x2+3tx+1.φ(x)=xex-m+2
(1)当m=2时,求φ(x)的极值点;
(2)讨论f(x)在区间(0,2)上的单调性;
(3)f(x)≤ϕ(x)对任意x∈[0,+∞)恒成立时,m的最大值为1,求t的取值范围.

分析 (1)求出函数的导数,解关于导函数的不等式,求出函数的单调区间,求出函数的极值即可;
(2)求出函数的导数,通过讨论t的范围,求出函数的单调区间即可;
(3)问题转化为m≤xex-m3+$\frac{3(t+1)}{2}$x2-3tx+1=x[ex-x2+$\frac{3(t+1)}{2}$-3t]+1对任意x∈[0,+∞)恒成立.令g(x)=ex-x2+$\frac{3(t+1)}{2}$x-3t,x∈[0,+∞),根据函数的单调性求出t的范围即可.

解答 解:(1)当m=2时,ϕ(x)=xex,∴ϕ′(x)=ex(x+1),
令ϕ′(x)=0,则x=-1,当x<-1时,ϕ′(x)<0;当x>-1时,ϕ′(x)>0,
所以x=-1是ϕ(x)的极小值点,无极大值点.                                                 
(2)f'(x)=3x2-3(t+1)x+3t=3(x-1)(x-t),
①当0<t<1时,f(x)在(0,t),(1,2)上单调递增;在(t,1)上单调递减,
②当t=1时,f(x)在(0,2)上单调递增.
③当1<t<2时,f(x)在(0,1),(t,2)上单调递增;在(1,t)上单调递减,
④当t≥2时,f(x)在(0,1)上单调递增,在(1,2)上单调递减;
(3)∵$f(x)={x^3}-\frac{3(t+1)}{2}{x^2}+3tx+1$,ϕ(x)=xex-m+2.
由f(x)≤ϕ(x)得x3-$\frac{3(t+1)}{2}$x2+3tx+1≤xex-m+2对任意x∈[0,+∞)恒成立,
即m≤xex-m3+$\frac{3(t+1)}{2}$x2-3tx+1=x[ex-x2+$\frac{3(t+1)}{2}$-3t]+1对任意x∈[0,+∞)恒成立.
令g(x)=ex-x2+$\frac{3(t+1)}{2}$x-3t,x∈[0,+∞),
根据题意,可以知道m的最大值为1,则g(x)≥0恒成立,
由于g(0)=1-3t≥0,则$0<t≤\frac{1}{3}$,
当$0<t≤\frac{1}{3}$时,g′(x)=ex-2x+$\frac{3(t+1)}{2}$,
令h(x)=ex-2x+$\frac{3(t+1)}{2}$,则h′(x)=ex-2,令h′(x)=0,得x=ln2,
则h(x)在(0,ln2)上单调递减,在(ln2,+∞)上单调递增,
则$h{(x)_{min}}=g'(ln2)=2+\frac{3(t+1)}{2}-2ln2>0$,
∴g(x)在[0,+∞)上单调递增.
从而g(x)≥g(0)=1-3t≥0,满足条件,
故t的取值范围是$(0,\frac{1}{3}]$.

点评 本题考查了函数的单调性、最值问题,考查导数的应用以及分类讨论思想,转化思想,是一道综合题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知数列{an}满足a1=2,an+1=2an+2n+1
(Ⅰ)证明数列{$\frac{{a}_{n}}{{2}^{n}}$}是等差数列;
(Ⅱ)求数列{$\frac{{a}_{n}}{n}$}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.如图所示,∠BAC=$\frac{2π}{3}$,圆M与AB,AC分别相切于点D,E,AD=1,点P是圆M及其内部任意一点,且$\overrightarrow{AP}=x\overrightarrow{AD}+y\overrightarrow{AE}$(x,y∈R),则x+y的取值范围是(  )
A.$[1,4+2\sqrt{3}]$B.$[4-2\sqrt{3},4+2\sqrt{3}]$C.$[1,2+\sqrt{3}]$D.$[2-\sqrt{3},2+\sqrt{3}]$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.各项均不为零的数列{an}的前n项和为Sn. 对任意n∈N*,$\overrightarrow{m_n}=({a_{n+1}}-{a_n},\;2{a_{n+1}})$都是直线y=kx的法向量.若$\lim_{n→∞}{S_n}$存在,则实数k的取值范围是(-∞,-1)∪(0,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知等差数列{an}的前n项和为Sn,a1=-9,a2为整数,且对任意n∈N*都有Sn≥S5
(1)求{an}的通项公式;
(2)设${b_1}=\frac{4}{3}$,${b_{n+1}}=\left\{\begin{array}{l}{a_n},\;\;\;\;\;\;\;\;\;\;\;\;\;n为奇数\\-{b_n}+{(-2)^n},n为偶数\;\end{array}\right.$(n∈N*),求{bn}的前n项和Tn
(3)在(2)的条件下,若数列{cn}满足${c_n}={b_{2n}}+{b_{2n+1}}+λ{(-1)^n}{(\frac{1}{2})^{{a_n}+5}}\;(n∈{N^*})$.是否存在实数λ,使得数列{cn}是单调递增数列.若存在,求出λ的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若P是抛物线y2=8x上的动点,点Q在以点C(2,0)为圆心,半径长等于1的圆上运动.则|PQ|+|PC|的最小值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知△ABC中,若AB=3,AC=4,$\overrightarrow{AB}•\overrightarrow{AC}=6$,则BC=$\sqrt{13}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.函数f(x)=2sin(ωx+φ)(ω>0,0<φ<$\frac{π}{2}$)的部分图象如图所示,M为最高点,该图象与y轴交于点F(0,$\sqrt{2}$),与x轴交于点B,C,且△MBC的面积为π.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)若f(α-$\frac{π}{4}$)=$\frac{2\sqrt{5}}{5}$,求cos2α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.函数y=-2cos2x+cosx+1,x∈[-$\frac{π}{2}$,$\frac{π}{2}$]的图象大致为(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案