精英家教网 > 高中数学 > 题目详情

【题目】如图,三棱柱中,侧面为菱形,.

(1)证明:

(2)若,求二面角的余弦值的绝对值.

【答案】(1)证明见解析;(2).

【解析】

(1)连接,交于点,连接,证明平分得到答案.

2为坐标原点,的方向为轴正方向,为单位长,建立空间直角坐标,计算相应点坐标,计算法向量,利用二面角公式计算得到答案.

证明:(1)连接,交于点,连接

因为侧面为菱形,

所以,且的中点,又,所以平面.

由于平面,故.

,故.

(2)因为,且的中点,所以.

又因为,所以,故,从而两两相互垂直,为坐标原点,的方向为轴正方向,为单位长,建立空间直角坐标

因为,所以为等边三角形,又,则

是平面的法向量,则

,即 所以.

是平面的法向量,则,同理可取,

,所以二面角的余弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论的单调性;

(2)时,设的两个极值点为,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在R上的可导函数满足,记的导函数为,当时恒有.,则m的取值范围是(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂生产的产品的直径均位于区间内(单位: ).若生产一件产品的直径位于区间内该厂可获利分别为10302010(单位:元),现从该厂生产的产品中随机抽取200件测量它们的直径,得到如图所示的频率分布直方图.

1的值,并估计该厂生产一件产品的平均利润;

2现用分层抽样法从直径位于区间内的产品中随机抽取一个容量为5的样本,从样本中随机抽取两件产品进行检测,求两件产品中至多有一件产品的直径位于区间内的槪率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥OABCD中,底面ABCD四边长为1的菱形,∠ABC=OA⊥底面ABCDOA=2MOA的中点,NBC的中点.

1)证明:直线MN∥平面OCD

2)求异面直线ABMD所成角的大小;

3)求点B到平面OCD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示在四棱锥中,下底面为正方形,平面平面为以为斜边的等腰直角三角形,,若点是线段上的中点.

1)证明平面.

2)求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知平面直角坐标系,直线过点,且倾斜角为,以为极点,轴的非负半轴为极轴建立极坐标系,圆的极坐标方程为.

(1)求直线的参数方程和圆的标准方程;

(2)设直线与圆交于两点,若,求直线的倾斜角的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给定椭圆,称圆心在坐标原点O,半径为的圆是椭圆C伴随圆,已知椭圆C的两个焦点分别是.

1)若椭圆C上一动点满足,求椭圆C及其伴随圆的方程;

2)在(1)的条件下,过点作直线l与椭圆C只有一个交点,且截椭圆C伴随圆所得弦长为,求P点的坐标;

3)已知,是否存在ab,使椭圆C伴随圆上的点到过两点的直线的最短距离.若存在,求出ab的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案