精英家教网 > 高中数学 > 题目详情

【题目】近年来,微信越来越受欢迎,许多人通过微信表达自己、交流思想和传递信息,微信是现代生活中进行信息交流的重要工具.而微信支付为用户带来了全新的支付体验,支付环节由此变得简便而快捷.某商场随机对商场购物的100名顾客进行统计,其中40岁以下占 ,采用微信支付的占 ,40岁以上采用微信支付的占
(Ⅰ)请完成下面2×2列联表:

40岁以下

40岁以上

合计

使用微信支付

未使用微信支付

合计

并由列联表中所得数据判断有多大的把握认为“使用微信支付与年龄有关”?
(Ⅱ)若以频率代替概率,采用随机抽样的方法从“40岁以下”的人中抽取2人,从“40岁以上”的人中抽取1人,了解使用微信支付的情况,问至少有一人使用微信支付的概率为多少?
参考公式: ,n=a+b+c+d.
参考数据:

P(K2≥k0

0.100

0.050

0.010

0.001

k0

2.760

3.841

6.635

10.828

【答案】解:(Ⅰ)由已知可得,40岁以下的有100× =60人,使用微信支付的有60× =40人,40岁以上使用微信支付有40× =10人. ∴2×2列联表为:

40岁以下

40岁以上

合计

使用微信支付

40

10

50

未使用微信支付

20

30

50

合计

60

40

100

由列联表中的数据计算可得K2的观测值为k= = ,由于 >10.828,
∴有99.9%的把握认为“使用微信支付与年龄有关”;
(Ⅱ) 若以频率代替概率,采用随机抽样的方法从“40岁以下”的人中抽取2人,这两人使用微信支付分别记为A,B,
则P(A)=P(B)= ,从“40岁以上”的人中抽取1人,这个人使用微信支付记为C,则P(C)=
显然A,B,C相互独立,
则至少有一人使用微信支付的概率为P=1﹣P( )=1﹣ × × =
故至少有一人使用微信支付的概率为
【解析】(Ⅰ)由40岁以下的有100× =60人,使用微信支付的有60× =40人,40岁以上使用微信支付有40× =10人.即可完成2×2列联表,根据2×2列联表求得观测值K2与参考值对比即可求得答案;(Ⅱ)分别求得“40岁以下”的人中抽取2人,这两人使用微信支付的概率,从“40岁以上”的人中抽取1人,这个人使用微信支付的概率,根据独立事件的概率公式,即可求得答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知集合A={x|log2x>2}, ,则下列结论成立的是(
A.A∩B=A
B.(RA)∩B=A
C.A∩(RB)=A
D.(RA)∩(RB)=A

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学生对函数的性质进行研究,得出如下的结论:

①函数上单调递增,在上单调递减;

②点是函数图像的一个对称中心;

③存在常数,使对一切实数均成立;

④函数图像关于直线对称.其中正确的结论是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在矩形 中, ,点 的中点, 为线段 (端点除外)上一动点.现将 沿 折起,使得平面 平面 .设直线 与平面 所成角为 ,则 的最大值为( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以下四个命题: ①已知随机变量X~N(0,σ2),若P(|X|<2)=a,则P(X>2)的值为
②设a、b∈R,则“log2a>log2b”是“2ab>1”的充分不必要条件;
③函数f(x)= ﹣( x的零点个数为1;
④命题p:n∈N,3n≥n2+1,则¬p为n∈N,3n≤n2+1.
其中真命题的序号为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】小明家订了一份报纸,送报人可能在早上6 : 30至7 : 30之间把报纸送到小明家,小明离开家去上学的时间在早上7 : 00至8 : 30之间,问小明在离开家前能得到报纸(称为事件)的概率是多少( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设关于的一元二次方程

(1)若是从0,1,2,3四个数中任取的一个数, 是从0,1,2三个数中任取的一个数,求上述方程有实根的概率;

(2)若时从区间上任取的一个数, 是从区间上任取的一个数,求上述方程有实根的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数y=cosx的图象与直线x= ,x= 以及x轴所围成的图形的面积为a,则(x﹣ )(2x﹣ 5的展开式中的常数项为(用数字作答).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线 过坐标原点 ,圆 的方程为
(1)当直线 的斜率为 时,求 与圆 相交所得的弦长;
(2)设直线 与圆 交于两点 ,且 的中点,求直线 的方程.

查看答案和解析>>

同步练习册答案