【题目】已知函数,,为的导函数.
(1)讨论的单调性;
(2)若,当时,求证:有两个零点.
【答案】(1)答案不唯一,具体见解析(2)证明见解析;
【解析】
(1)结合函数的导数与单调性的关系,对进行分类讨论,分为,,,几种情形,即可求出函数的单调性;
(2)结合(1)中的结果可得的单调性,易得1为函数一个零点,结合函数的单调性及函数的零点判定定理可求结果.
(1)
①当时,令,得,令,得,
所以在上单调递增,在上单调递减;
②当时,令,得,,
i)当时,,所以在上单调递增;
ii)当时,令,得或;令,得,
所以在和单调递增,在单调递减;
iii)当时,令,得或;令,得,
所以在和单调递增,在单调递减;
综上:①当时,在上单调递增;在单调递减;
②i)当时,在上单调递增;
ii)当时,在和单调递增,在单调递减;
iii)当时,在和单调递增,在单调递减;
(2)
因为,所以是函数的一个零点,
由(1)知时,在单调递减,所以,
又因为,所以,
所以在上恰有一个零点,
所以当时有两个零点.
科目:高中数学 来源: 题型:
【题目】如图,在中,,,,D为线段BC(端点除外)上一动点.现将沿线段AD折起至,使二面角的大小为120°,则在点D的移动过程中,下列说法错误的是( )
A.不存在点,使得
B.点在平面上的投影轨迹是一段圆弧
C.与平面所成角的余弦值的取值范围是
D.线段的最小值是
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系xOy中,曲线C1的参数方程为(α为参数),以原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为,且在极坐标下点P.
(1)求曲线C1的普通方程和曲线C2的直角坐标方程;
(2)若曲线C1与曲线C2交于A,B两点,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列,其中.
(1)若满足.
①当,且时,求的值;
②若存在互不相等的正整数,满足,且成等差数列,求的值.
(2)设数列的前项和为,数列的前n项和为,,,若,,且恒成立,求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知如图所示的三棱锥D﹣ABC的四个顶点均在球O的球面上,△ABC和△DBC所在平面相互垂直,AB=3,AC=,BC=CD=BD=2,则球O的表面积为( )
A.4π B.12π C.16π D.36π
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学生为了测试煤气灶烧水如何节省煤气的问题设计了一个实验,并获得了煤气开关旋钮旋转的弧度数与烧开一壶水所用时间的一组数据,且作了一定的数据处理(如表),得到了散点图(如图).
1.47 | 20.6 | 0.78 | 2.35 | 0.81 | -19.3 | 16.2 |
表中,.
(1)根据散点图判断,与哪一个更适宜作烧开一壶水时间关于开关旋钮旋转的弧度数的回归方程类型?(不必说明理由)
(2)根据判断结果和表中数据,建立关于的回归方程;
(3)若旋转的弧度数与单位时间内煤气输出量成正比,那么为多少时烧开一壶水最省煤气?
附:对于一组数据,…,,其回归直线的斜率和截距的最小二乘估计分别为,.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com