精英家教网 > 高中数学 > 题目详情
6.在直角坐标系xOy中,曲线M的参数方程为$\left\{\begin{array}{l}{x=sinθ+cosθ}\\{y=sin2θ}\end{array}\right.$(θ为参数),若以直角坐标系的原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线N的极坐标方程为ρsin(θ+$\frac{π}{4}$)=$\frac{\sqrt{2}}{2}$t(其中t为常数).当曲线N与曲线M只有一个公共点时,t的取值范围为$\left\{{t\left|{1-\sqrt{2}<t≤1+\sqrt{2}或t=-\frac{5}{4}}\right.}\right\}$.

分析 把参数方程利用同角三角函数的基本关系化为直角坐标方程,根据极坐标和直角坐标的互化公式把极坐标方程化为直角坐标方程,当直线N过点A($\sqrt{2}$,1)时满足要求,此时t=$\sqrt{2}$+1.当直线N过点B(-$\sqrt{2}$,1)时,此时t=-$\sqrt{2}$+1.当直线和抛物线相切时,联立联立$\left\{\begin{array}{l}{y={x}^{2}-1}\\{x+y-t=0}\end{array}\right.$,由△=0求得t,数形结合求得t的取值范围.

解答 解:∵曲线M的参数方程为$\left\{\begin{array}{l}{x=sinθ+cosθ}\\{y=sin2θ}\end{array}\right.$(θ为参数),
∴x2=(sinθ+cosθ)2=1+2sin2θ=1+y,
即 x2=1+y,
∴曲线M的参数方程y=x2-1.x∈[-$\sqrt{2}$,$\sqrt{2}$]表示一段抛物线
曲线N的极坐标方程为ρsin(θ+$\frac{π}{4}$)=$\frac{\sqrt{2}}{2}$t(其中t为常数).
∴$ρsinθcos\frac{π}{4}+ρcosθsin\frac{π}{4}$=$\frac{\sqrt{2}}{2}t$,∴ρsinθ+ρcosθ=t,
化为直角坐标方程为 x+y-t=0.
由曲线N与曲线M只有一个公共点,若曲线M,N只有一个公共点,
则当直线N过点A($\sqrt{2}$,1)时满足要求,此时t=$\sqrt{2}$+1,
并且向左下方平行运动直到过点(-$\sqrt{2}$,1)之前,
总是保持只有一个公共点.
当直线N过点B(-$\sqrt{2}$,1)时,此时t=-$\sqrt{2}$+1,所以-$\sqrt{2}$+1<t≤$\sqrt{2}$+1满足要求.
再接着从过点(-$\sqrt{2}$,1)开始向左下方平行运动直到相切之前总有两个公共点,
相切时仍然只有一个公共点.
联立$\left\{\begin{array}{l}{y={x}^{2}-1}\\{x+y-t=0}\end{array}\right.$有唯一解,即 x2+x-1-t=0 有唯一解,
故有△=1+4+4t=0,解得t=-$\frac{5}{4}$.
$\left\{{t\left|{1-\sqrt{2}<t≤1+\sqrt{2}或t=-\frac{5}{4}}\right.}\right\}$.
故答案为:$\left\{{t\left|{1-\sqrt{2}<t≤1+\sqrt{2}或t=-\frac{5}{4}}\right.}\right\}$.

点评 本题主要考查把极坐标方程、参数方程化为直角坐标方程的方法,点到直线的距离公式的应用,直线和圆的位置关系,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知f(x)的定义域为R,且f(x+2)•[1-f(x)]=1+f(x),若f(1)=2-$\sqrt{3}$,求f(2003)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若函数f(x)的零点为x=2,则函数y=f(2x-1)的零点为$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.等比数列{an}中,a1=3,a4=24,设数列{$\frac{1}{{a}_{n}}$}的前n项和为Sn,则S8等于(  )
A.$\frac{85}{128}$B.$\frac{21}{64}$C.$\frac{63}{128}$D.$\frac{35}{64}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在满足极坐标和直角坐标互化条件下,极坐标方程ρ2=$\frac{12}{3co{s}^{2}θ+4si{n}^{2}θ}$经过直角坐标系下的伸缩变换$\left\{\begin{array}{l}{x′=\frac{1}{2}x}\\{y′=\frac{\sqrt{3}}{3}y}\end{array}\right.$后,得到的曲线是(  )
A.直线B.椭圆C.双曲线D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在直角坐标系xoy中,曲线C1,C2的参数方程分别为$\left\{\begin{array}{l}x=\sqrt{5}cosθ\\ y=\sqrt{5}sinθ\end{array}\right.$(θ为参数)和$\left\{\begin{array}{l}x=\sqrt{5}-\frac{{\sqrt{2}}}{2}t\\ y=-\frac{{\sqrt{2}}}{2}t\end{array}\right.$(t为参数)则曲线C1,C2的交点的极坐标(5,$\frac{3π}{2}$)或(5,0).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知α,β是平面,m,n是直线,给出下列命题:
①若m⊥α,m?β,则α⊥β;
②若m?α,n?α,m∥β,n∥β,则α∥β;
③若m?α,n?α,m,n是异面直线,那么n与α相交;
④若α∩β=m,n∥m,则n∥α且n∥β
其中正确的命题的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,在△ABC中,BC=3.AC=$\frac{3}{2}$$\sqrt{2}$,B=$\frac{π}{6}$,∠BAC$>\frac{π}{2}$,AE,AF是∠BAC的三等分角平分线,分别交BC于点E,F.
(1)求角C的大小;
(2)求线段EF的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设函数h(x)=x2-mx,g(x)=lnx.
(Ⅰ)设f(t)=m${∫}_{\frac{π}{2}}^{t}$(sinx+cosx)dx且f(2016π)=2,若函数h(x)与g(x)在x=x0处的切线平行,求这两切线间的距离;
(Ⅱ)任意x>0,不等式h(x)≥g(x)恒成立,求实数m的取值范围.

查看答案和解析>>

同步练习册答案