精英家教网 > 高中数学 > 题目详情
5.函数f(x)=2sin(ωx+φ$)(ω>0,-\frac{π}{2}<$(ω>0,-$\frac{π}{2}$<φ<$\frac{π}{2}$)的部分图象如图所示,则f(x)的图象可由函数g(x)=2sinωx的图象至少向右平移$\frac{π}{6}$个单位得到.

分析 利用函数的图象确定周期T的值,利用周期公式确定ω,再根据图象过点($\frac{5π}{12}$,2),确定φ的值,即可求函数f(x)的解析式,由函数y=Asin(ωx+φ)的图象变换可得结论.

解答 解:由图象可得,$\frac{3T}{4}$=$\frac{5π}{12}$-(-$\frac{π}{3}$),解得T=π,
由T=$\frac{2π}{ω}$=π,得ω=2.
因为图象过点($\frac{5π}{12}$,2),
所以2sin(2×$\frac{5π}{12}$+φ)=2,
则$\frac{5π}{6}$+φ=2kπ+$\frac{π}{2}$,得φ=2kπ-$\frac{π}{3}$,k∈Z,
由-$\frac{π}{2}$<φ<$\frac{π}{2}$,得φ=-$\frac{π}{3}$,
f(x)=2sin(2x-$\frac{π}{3}$),
所以将g(x)=2sin2x的图象向右平移$\frac{π}{6}$个单位得到函数f(x)=2sin(2x-$\frac{π}{3}$).
故答案为:$\frac{π}{6}$.

点评 本题考查三角函数解析式的确定,考查图象的变换,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.在△ABC中,角A,B,C所对的边为a,b,c.已知$\frac{c}{2}$=b-acosC.
(1)求角A的大小;
(2)若a=$\sqrt{15}$,b=4,求边c的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.(Ⅰ)当x<0时,证明:ex<1+x+$\frac{x^2}{2}$;
(Ⅱ)求最大的整数a,使得函数f(x)=2ex+ln(x+1)-$\frac{a}{10}$x为增函数.(e=2,718…是自然对数的底数)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.棱长为2的正方体ABCD-A1B1C1D1中,E为BC的中点,则线段D1E的长度为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=x2+2ax+alnx,a≤0.
(1)若当a=-2时,求f(x)的单调区间;
(2)若f(x)>$\frac{1}{2}$(2e+1)a,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知集合A=$\{x|y=\sqrt{x-1}\}$,A∩B=ϕ,则集合B不可能是(  )
A.{x|x<-1}B.{(x,y)|y=x-1}C.{y|y=-x2}D.{x|x≥-1}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知对于任意实数x,二次函数f(x)=x2-4ax+2a+12(a∈R)的值都是非负的.
(1)求a的取值范围;
(2)求函数g(a)=(a+1)(|a-1|+2)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,在三棱锥ABC-A1B1C1中,AC=BC=AA1=2,∠ACB=90°,∠A1AC=60°,M,N分别是线段AA1,BC上的点,且NC=NB,AA1⊥平面BCM.
(1)求证:AN∥平面BC1M;
(2)求二面角M-BC1-B1的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的图象的一个最高点的坐标为($\frac{π}{3}$,3),且当x1+x2=$\frac{7π}{6}$时,满足f(x1)=-f(x2).
(1)当函数f(x)的周期最大时,求f(x)的单调递增区间;
(2)在(1)的条件下,将函数f(x)的图象上每个点的横坐标缩短为原来的$\frac{1}{2}$倍,纵坐标不变,再将所得函数图象向左平移$\frac{π}{12}$得到函数g(x)的图象,求函数g(x)在[$\frac{π}{24}$,$\frac{7π}{24}$]上的值域.

查看答案和解析>>

同步练习册答案