精英家教网 > 高中数学 > 题目详情
8.设复数z1,z2在复平面内对应的点关于原点对称,若z1=2-3i(i为虚数单位),则z2=(  )
A.-2+3iB.-2-3iC.2+3iD.2-3i

分析 由题意求出z1在复平面内所对应点的坐标,利用对称性求得z2在复平面内对应点的坐标得答案.

解答 解:∵复数z1,z2在复平面内对应的点关于原点对称,且z1=2-3i,
∴z1对应点的坐标为(2,-3),
∴z2对应点的坐标为(-2,3),
∴z2=-2+3i.
故选:A.

点评 本题考查复数的代数表示法及其几何意义,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.数列{an}的前n项和为Sn,a1=2,an+1=Sn+n.
(1)写出a2,a3,a4的值,并求{an}的通项公式;
(2)正项等差数列{bn}的前n项和为Tn,且T3=9,并满足a1+b1,a2+b2,a3+$\frac{1}{2}$b3,成等比数列.
(i)求数列{bn}的通项公式
(ii)设Bn=$\frac{1}{{b}_{1}^{2}}$+$\frac{1}{{b}_{2}^{2}}$+…+$\frac{1}{{b}_{n}^{2}}$,试确定Bn与$\frac{3}{4}$的大小关系,并给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,平面PAC⊥平面ABC,AC⊥BC,PE∥CB,M是AE的中点.
(1)若N是PA的中点,求证:平面CMN⊥平面PAC;
(2)若MN∥平面ABC,求证:N是PA的中点.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.不等式(1+x)(1+|x|)<0的解集是{x|x<-1}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知($\sqrt{x}$+$\frac{x}{2}$)n的展开式中,前三项系数成等差数列.
(1)求展开式中含有$\sqrt{{x}^{11}}$的项的二项式系数及项的系数;
(2)求展开式中所有项的系数之和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设A={x|2a≤x≤a+3},B={x|x<-1或x>5},求a在什么条件下满足:
(1)A∩B=∅;
(2)A∩B=A.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知直线l过坐标原点,且倾斜角是直线y=3x-8的倾斜角的2倍,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.某校共有教师200人,男学生800人,女学生600人,现用分层抽样的方法从所有师生中抽取一个容量为n的样本,已知从男学生中抽取的人数为100人,那么n=200.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若不等式x2-2(m+2)x+m2-1≥0的解集为R,则实数m的取值范围为(-∞,-$\frac{5}{4}$].

查看答案和解析>>

同步练习册答案