【题目】环境指数是“宜居城市”评比的重要指标,根据以下环境指数的数据,对名列前20名的“宜居城市”的环境指数进行分组统计,结果如表所示,现从环境指数在和内的“宜居城市”中随机抽取2个市进行调研,则至少有1个市的环境指数在的概率为( )
组号 | 分组 | 频数 |
1 | 2 | |
2 | 8 | |
3 | 7 | |
4 | 3 |
A.B.C.D.
科目:高中数学 来源: 题型:
【题目】以下说法中正确的是______.
①函数在区间上单调递减;
②函数的图象过定点;
③若是函数的零点,且,则;
④方程的解是;
⑤命题“,”的否定是,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数.
(1)求的单调递增区间.
(2)在ΔABC中,角A,B,C所对的边分别为a,b,c,若f(A)=1,c=10,cosB=,求ΔABC的中线AD的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,直线的参数方程为(为参数,),曲线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系.
(1)求曲线的极坐标方程;
(2)设曲线与曲线的交点分别为,求的最大值及此时直线的倾斜角.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义在R上的函数f(x)满足,.
(1)求函数f(x)的解析式;
(2)求函数g(x)的单调区间;
(3)给出定义:若s,t,r满足,则称s比t更接近于r,当x≥1时,试比较和哪个更接近,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”.利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”.小华同学利用刘徽的“割圆术”思想在半径为1的圆内作正边形求其面积,如图是其设计的一个程序框图,则框图中应填入、输出的值分别为( )
(参考数据:)
A. B.
C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出下列四个命题:
①命题“若,则”的逆否命题;
②“,使得”的否定是:“,均有”;
③命题“”是“”的充分不必要条件;
④:,:,且为真命题.
其中真命题的序号是________.(填写所有真命题的序号)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com