精英家教网 > 高中数学 > 题目详情

【题目】如图,以向量 为邻边作平行四边形OADB, ,用 表示

【答案】解:∵四边形OADB是平行四边形,
= + = + = = )=
可得 = = ),
由向量加法法则,得 = + = + )= +
= = =
= + = + × = = +
由向量减法法则,得 = = + )﹣( + )=
综上,可得 = + = + ), =
【解析】根据向量加法的平行四边形法则,得 = + ,从而得到 = + ).由向量减法法则得 =( ),从而得到 = = ),进而算出 = + = + ,最后得到 = =
【考点精析】本题主要考查了向量的减法及其几何意义和平面向量的基本定理及其意义的相关知识点,需要掌握向量减法的三角形法则:共起点,箭头指向被减向量;如果是同一平面内的两个不共线向量,那么对于这一平面内的任意向量,有且只有一对实数,使才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知:cos(α+ )= <α< ,求cos(2α+ ).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

(1)若当时,函数的图象恒在直线上方,求实数的取值范围;

(2)求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若变量x,y满足约束条件 ,且z=2x+y的最大值和最小值分别为m和n,则m﹣n=(
A.5
B.6
C.7
D.8

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C的对边分别为a,b,c,已知bcosC+ bsinC﹣a﹣c=0,则角B=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线 的焦点为,圆 .直线与抛物线交于点两点,与圆切于点.

(1)当切点的坐标为时,求直线及圆的方程;

(2)当时,证明: 是定值,并求出该定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校高一、高二、高三人数分别是400人、350人、350人.为调査该校学习情况,采用分层抽样的方法从中抽取一个容量为的样本.已知从高一的同学中抽取的同学有8人

(1)求样本容量的值和高二抽取的同学的人数

(2)若从高二抽取的同学中选出2人参加某活动,已知高二被抽取的同学中有2名女生,求至少有1名女同学被选中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某城市上年度电价为0.80元/千瓦时,年用电量为a千瓦时.本年度计划将电价降到0.55元/千瓦时~0.75元/千瓦时之间,而居民用户期望电价为0.40元/千瓦时(该市电力成本价为0.30元/千瓦时)经测算,下调电价后,该城市新增用电量与实际电价和用户期望电价之差成反比,比例系数为0.2a.试问当地电价最低为多少时,可保证电力部门的收益比上年度至少增加20%.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

1)求函数的最小正周期和单调递增区间;

2)当时,的最大值为2,求的值,并求出的对称轴方程.

查看答案和解析>>

同步练习册答案