精英家教网 > 高中数学 > 题目详情
已知椭圆的两个焦点为F1,F2,A为椭圆上一点,AF1⊥AF2,∠AF2F1=60°,求该椭圆的离心率.
考点:椭圆的简单性质
专题:圆锥曲线的定义、性质与方程
分析:由已知中AF1⊥AF2,∠AF2F1=60°,可得2a=AF1+AF2=(
3
+1
)c,进而可得椭圆的离心率.
解答: 解:∵椭圆的两个焦点为F1,F2,A为椭圆上一点,AF1⊥AF2,∠AF2F1=60°,
则AF1=sin60°F1F2=
3
c,AF2=cos60°F1F2=c,
即2a=AF1+AF2=(
3
+1
)c,
故椭圆的离心率e=
c
a
=
2c
2a
=
2c
(
3
+1)c
=
3
-1
点评:本题考查的知识点是椭圆的简单性质,难度不大,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=log2(1+2x+a4x)的定义域为[1,+∞),求实数a的取值范围
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在Rt△ABC(C为直角)中,D为BC边上的一个三等分点(靠近点C),则tan∠BAD的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数x,y满足不等式组
x-2y+2≥0
y≥|x|
,则
y+1
x+2
的取值范围是(  )
A、(-1,-2]
B、[
3
4
5
4
]
C、[
2
3
,∞)
D、[
1
2
5
4
]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin(2x+φ),其中φ为实数,且f(x)≤f(
9
)对x∈R恒成立.记P=f(
3
),Q=f(
6
),R=f(
6
),则P,Q,R的大小关系是(  )
A、R<P<Q
B、Q<R<P
C、P<Q<R
D、Q<P<R

查看答案和解析>>

科目:高中数学 来源: 题型:

已知M(3,m)在抛物线C:y2=2px(p>0)上,F为焦点,|MF|=5.
(1)求m的值和抛物线c的方程;
(2)求抛物线C上的点P到直线l:x-y+5=0的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
2
x
 
1+
2
x
 
-
1
2
,[x]表示不超过x的最大整数,则函数y=[f(x))]的值域集合
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某校高一、高二两个年级进行乒乓球对抗赛,每个年级选出3名学生组成代表队,比赛规则是:
①按“单打、双打、单打”顺序进行三盘比赛;
②代表队中每名队员至少参加一盘比赛,但不能参加两盘单打比赛.若每盘比赛中高一、高二获胜的概率分别为
3
7
4
7

(1)按比赛规则,高一年级代表队可以派出多少种不同的出场阵容?
(2)若单打获胜得2分,双打获胜得3分,求高一年级得分ξ的概率发布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b∈R,
3+i
1-i
=a+bi(i为虚数单位),则a+b=(  )
A、0B、1C、2D、3

查看答案和解析>>

同步练习册答案