精英家教网 > 高中数学 > 题目详情

【题目】若函数f(x)=tx2-(22t+60)x+144t(x>0).

(1)要使f(x)≥0恒成立,求t的最小值;

(2)令f(x)=0,求使t>20成立的x的取值范围.

【答案】(1)30;(2)(9,16).

【解析】试题分析:(1))因为x2-22x+144>0,所以要使不等式f(x)≥0恒成立,即tx2-(22t+60)x+144t≥0(x>0)恒成立,等价于t (x>0)恒成立,求函数最值即可;

(2)由f(x)=0,得t=,即可解>20即可.

试题解析:

(1)因为x2-22x+144>0,所以要使不等式f(x)≥0恒成立,即tx2-(22t+60)x+144t≥0(x>0)恒成立,等价于t (x>0)恒成立,

=30(x>0),

当且仅当x,即x=12时,等号成立,

所以当t≥30时,不等式tx2-(22t+60)x+144t≥0恒成立,t的最小值为30.

(2)由t>20,得>20,整理得x2-25x+144<0,即(x-16)(x-9)<0,解得9<x<16,所以使t>20成立的x的取值范围为(9,16).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,以原点O为圆心,椭圆C的长半轴长为半径的圆与直线相切.

⑴求椭圆C的标准方程;

⑵已知点AB为动直线与椭圆C的两个交点,问:在x轴上是否存在定点E,使得为定值?若存在,试求出点E的坐标和定值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知椭圆的左右顶点分别为,右焦点为,焦距为,点是椭圆C上异于两点的动点, 的面积最大值为.

(1)求椭圆C的方程;

(2)若直线与直线交于点,试判断以为直径的圆与直线的位置关系,并作出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,tanA是以﹣4为第三项,4为第七项的等差数列的公差,tanB是以2为公差,9为第五项的等差数列的第二项,则这个三角形是(
A.锐角三角形
B.钝角三角形
C.等腰直角三角形
D.等腰或直角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形中, 为正三角形, 中心点,将沿边折起,使点至点,已知与平面所成的角为.

(1)求证:平面平面

(2)求已知二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的几何体中,四边形是正方形, 平面, , 分别为的中点,且.

(1)求证:平面平面

(2)求证: 平面.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线不过原点.

(1)求过点且与直线垂直的直线的方程;

(2)直线与两坐标轴相交于AB两点,若直线与点AB的距离相等,且过原点,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一房产商竞标得一块扇形OPQ地皮,其圆心角∠POQ= ,半径为R=200m,房产商欲在此地皮上修建一栋平面图为矩形的商住楼,为使得地皮的使用率最大,准备了两种设计方案如图,方案一:矩形ABCD的一边AB在半径OP上,C在圆弧上,D在半径OQ;方案二:矩形EFGH的顶点在圆弧上,顶点G,H分别在两条半径上.请你通过计算,为房产商提供决策建议.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】动点分别到两定点 连线的斜率之乘积为,设的轨迹为曲线 分别为曲线的左右焦点,则下列命题中:

(1)曲线的焦点坐标为 ;

(2)若,则 ;

(3)当时, 的内切圆圆心在直线上;

(4)设,则的最小值为.

其中正确命题的序号是__________

查看答案和解析>>

同步练习册答案