【题目】为了积极支持雄安新区建设,鼓励更多优秀大学生毕业后能到新区去,某985高校组织了一次模拟招聘活动,现从考试成绩中随机抽取100名学生的笔试成绩,并按成绩分成五组:第1组,第2组,第3组,第4组,第5组,得到的频率分布直方图如图所示,(由于某种原因,部分直方图不够清晰),同时规定成绩不低于90分为“优秀”,成绩低于90分为“良好”,且只有成绩“优秀”的学生才能获得专题测试资格.
(1)若已知分数段与的人数比为2:1,请补全损坏的直方图;
(2)如果用分层抽样的方法从成绩为“优秀”和“良好”中选出10人,设甲是选出的成绩“优秀”中的一个,若从选出的成绩“优秀”的学生中再任选2人参加两项不同的专题测试(每人参加一种,二者互不相同),求甲被选中的概率.
【答案】(1) 见解析(2)
【解析】
(1)由频率分布直方图得[90,100]的频率为0.3,由分数段[90,95)与[95,100]的人数比为2:1,求出分数段[90,95)与[95,100]对应的小矩形有高分别为0.02,0.01,由此能求出补齐损坏的直方图.
(2)由频率分布直方图得[90,100]的频率为0.3,用分层抽样的方法从成绩为“优秀”和“良好”中选出10人,其中选中“优秀”的学生有3人,选中“良好”的学生有7人,由此能求出甲被选中的概率.
(1)根据题意得良好学生的人数为100×(0.01+0.07+0.06)×5=70人,
所以 优秀学生的人数为100-70=30人
又因为分数段与的人数比为2:1,
所以两分数段的分数分别为20人和10人.
故补齐后的直方图如图所示
(2)由频率分布直方图得:
[90,100]的频率为:1﹣(0.01+0.07+0.06)×5=0.3,
∴用分层抽样的方法从成绩为“优秀”和“良好”中选出10人,
其中选中“优秀”的学生有3人,选中“良好”的学生有7人,
设甲是选出的成绩“优秀”中的一个,
从选出的成绩“优秀”的学生中再任选2人参加两项不同的专题测试,
基本事件总数n,
甲被选中包含的基本事件个数m2.
∴甲被选中的概率p.
科目:高中数学 来源: 题型:
【题目】已知集合是满足下列性质的函数的全体:在定义域内存在实数,使得成立.
(1)已知函数,判断 函数是否属于集合;
(2)若函数属于集合,试求实数的取值范围;
(3) 证明函数属于集合.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某超市春节大酬宾,购物满100元可参加一次抽奖活动,规则如下:顾客将一个半径适当的小球放入如图所示的容器正上方的人口处,小球在自由落下的过程中,将3次遇到黑色障碍物,最后落入A袋或B袋中,顾客相应获得袋子里的奖品.已知小球每次遇到黑色障碍物时,向左向右下落的概率都为.若活动当天小明在该超市购物消费108元,按照活动规则,他可参加一次抽奖,则小明获得A袋中的奖品的概率为_____.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知正三棱锥,一个正三棱柱的一个底面的三个顶点在正三棱锥的三条侧棱上,另一底面在正三棱锥的底面上,若正三棱锥的高为15,底面边长为12,内接正三棱柱的侧面积为120.
(1)求三棱柱的高;
(2)求棱柱的上底面截棱锥所得的小棱锥与原棱锥的侧面积之比.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】乒乓球赛规定:一局比赛,双方比分在10平前,一方连续发球2次后,对方再连续发球2次,依次轮换,每次发球,胜方得1分,负方得0分。设在甲、乙的比赛中,每次发球,甲发球得1分的概率为,乙发球得1分的概率为,各次发球的胜负结果相互独立,甲、乙的一局比赛中,甲先发球.则开始第4次发球时,甲、乙的比分为1比2的概率为________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】经过长期观测得到:在交通繁忙的时段内,某公路汽车的车流量(千辆/h)与汽车的平均速度之间的函数关系式为:.
(1)若要求在该段时间内车流量超过2千辆,则汽车在平均速度应在什么范围内?
(2)在该时段内,若规定汽车平均速度不得超过,当汽车的平均速度为多少时,车流量最大?最大车流量为多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com