精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,曲线的参数方程为(为参数).以坐标原点为极点,轴正半轴为极轴建立极坐标系,直线的极坐标方程为.

(Ⅰ)求直线的直角坐标方程与曲线的普通方程;

(Ⅱ)已知点设直线与曲线相交于两点,求的值.

【答案】(Ⅰ)直线的直角坐标方程为;曲线的普通方程为;(Ⅱ).

【解析】

I)利用参数方程、普通方程、极坐标方程间的互化公式即可;

II)将直线参数方程代入抛物线的普通方程,可得,而根据直线参数方程的几何意义,知,代入即可解决.

可得直线的直角坐标方程为

由曲线的参数方程,消去参数

可得曲线的普通方程为.

易知点在直线上,直线的参数方程为(为参数).

将直线的参数方程代入曲线的普通方程,并整理得.

是方程的两根,则有.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】(导学号:05856310)

已知函数f(x)=x+ln x(a∈R).

(Ⅰ)当a=2时, 求函数f(x)的单调区间;

(Ⅱ)若关于x的函数g(x)=f(x)+ln x+2e(e为自然对数的底数)有且只有一个零点,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若的导函数,讨论的单调性;

(2)若是自然对数的底数),求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)若,求曲线处的切线方程;

(Ⅱ)若,求证:

(Ⅲ)当时,若关于的不等式的解集为,且,求的取值范围(用表示).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知无穷数列的前项中的最大项为,最小项为,设

1)若,求数列的通项公式;

2)若,求数列的前项和

3)若数列是等差数列,求证:数列是等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论的单调性;

(2)定义:对于函数,若存在,使成立,则称为函数的不动点.如果函数存在不动点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程为为参数).在以坐标原点为极点,轴的正半轴为极轴的极坐标系中,直线的极坐标方程为.

1)求曲线的普通方程及直线的直角坐标方程;

2)求曲线上的点到直线的距离的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国古代名著《张丘建算经》中记载:“今有方锥下广二丈,高三丈,欲斩末为方亭;令上方六尺:问亭方几何?”大致意思是:有一个四棱锥下底边长为二丈,高三丈;现从上面截取一段,使之成为正四棱台状方亭,且四棱台的上底边长为六尺,则该正四棱台的高为________尺,体积是_______立方尺(注:1=10尺).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地区高考实行新方案,规定:语文、数学和英语是学生的必考科目,学生还须从物理、化学、生物、历史、地理和政治六个科目中选取三个科目作为选考科目.若一个学生从六个科目中选出了三个科目作为选考科目,则称该学生确定选考方案,否则称该学生待确定选考方案.例如学生甲选择物理、化学和生物三个选考科目,则称学生甲确定选考方案.某校为了解高一年级名学生选考科目的意向,随机选取名学生进行了一次调查,统计情况如下表:

性别

选考方案确定情况

物理

化学

生物

历史

地理

政治

选考方案确定的有

选考方案待确定的有

选考方案确定的有

选考方案待确定的有

1)估计该校高一年级已确定选考方案的学生有多少人?

2)假设男生、女生选择选考科目是相互独立的.从确定选考方案的名男生中随机选出名,从确定选考方案的名女生中随机选出名,试求该男生和该女生的选考方案中都含有历史科目的概率;

3)从确定选考方案的8名男生中随机选出2名,设随机变量表示名男生选考方案相同,表示名男生选考方案不同,求的分布列及数学期望.

查看答案和解析>>

同步练习册答案