A. | (2,3) | B. | $(\root{3}{3},2)$ | C. | $(\root{3}{4},2)$ | D. | $(\root{3}{2},3)$ |
分析 根据题意f(x-2)=f(x+2),可得f(x+4)=f(x),周期T=4,且是偶函数,当x∈[-2,0]时,f(x)=($\frac{1}{2}$)x-1,可以做出在区间(-2,6]的图象,方程f(x)-loga(x+2)=0(a>1)恰有3个不同的实数根,即f(x)的图象与y=loga(x+2)的图象恰有3个不同的交点.可得答案.
解答 解:由题意f(x-2)=f(x+2),可得f(x+4)=f(x),
周期T=4,当x∈[-2,0]时,f(x)=($\frac{1}{2}$)x-1,
∴可得(-2,6]的图象如下:
从图可看出,要使f(x)的图象与y=loga(x+2)的图象恰有3个不同的交点,
则需满足$\left\{\begin{array}{l}{lo{g}_{a}(2+2)<3}\\{lo{g}_{a}(6+2)>3}\end{array}\right.$,
解得:$\root{3}{4}<a<2$.
故选C.
点评 本题主要考查方程根的个数的判断,根据函数的奇偶性和对称性的性质求出函数的周期性,利用数形结合是解决本题的关键,综合性较强,难度较大
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | “?x∈R,x2>0”的否定是“?x0∈R,x02≤0” | |
B. | “?x0∈R,x02<0”的否定是“?x∈R,x2<0” | |
C. | “?θ0∈R,sinθ0+cosθ0<1”的否定是“?θ∈R,sinθ+cosθ≥1” | |
D. | “?θ∈R,sinθ≤1”的否定是?θ0∈R,sinθ0>1 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com