分析 命题p:方程$\frac{{x}^{2}}{2}$+$\frac{{y}^{2}}{m}$=1表示焦点在y轴上的椭圆;则2<m.可得:¬p.命题q:?x∈R,4x2-4mx+4m-3≥0.则△≤0,解得m范围.利用(¬p)∧q为真,即可得出.
解答 解:命题p:方程$\frac{{x}^{2}}{2}$+$\frac{{y}^{2}}{m}$=1表示焦点在y轴上的椭圆;则2<m.¬p:m≤2.
命题q:?x∈R,4x2-4mx+4m-3≥0.则△=16m2-16(4m-3)≤0,解得1≤m≤3.
若(¬p)∧q为真,则$\left\{\begin{array}{l}{m≤2}\\{1≤m≤3}\end{array}\right.$,解得1≤m≤2.
∴m的取值范围是[1,2].
点评 本题考查了不等式的解法、复合命题的真假、椭圆的标准方程及其性质,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
A. | 若a,b∈R,则$\frac{b}{a}+\frac{a}{b}≥2$ | B. | 若x<0,则x+$\frac{4}{x}$≥-2$\sqrt{x•\frac{4}{x}}$=-4 | ||
C. | 若ab≠0,则$\frac{b^2}{a}+\frac{a^2}{b}≥a+b$ | D. | 若x<0,则2x+2-x>2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | {x|-1<x<0} | B. | {x|-2≤x<2} | C. | {x|-2<x<2} | D. | {x|x<-2,或x≥2} |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com