精英家教网 > 高中数学 > 题目详情
已知椭圆E:
x2
a2
+
y2
b2
=1
(a>b>0)的离心率为
3
2
,过左焦点作x轴的垂线交椭圆于A,B两点,且|AB|=1.(1)求椭圆E的方程:(2)设P,Q是椭圆E上的两点,P在第一象限,Q在第二象限,且OP⊥OQ,其中O是坐标原点,当P,Q运动时,是否存在定圆O,使得直线PQ都与定圆O相切?若存在,请求出圆O的方程,若不存在,请说明理由.
考点:直线与圆锥曲线的关系,直线与圆的位置关系,椭圆的标准方程
专题:计算题,直线与圆,圆锥曲线的定义、性质与方程
分析:(1)运用椭圆的离心率公式和过焦点垂直于x轴的弦长,以及a,b,c的关系,即可解得a,b,进而得到椭圆方程;
(2)以O为极点,x轴的正半轴为极轴,建立极坐标系.则椭圆的极坐标方程为ρ2(cos2θ+4sin2θ)=4,设P(ρ1,θ),Q(ρ2,θ+
π
2
),(0<θ<
π
2
),当P,Q运动时,假设存在定圆O,使得直线PQ都与定圆O相切.则设定圆O的半径为r,则在三角形OPQ中,运用面积相等即有
1
2
r|PQ|=
1
2
|OP|•|OQ|,化简整理,即可解得r.
解答: 解:(1)椭圆的离心率为
3
2
,即有
c
a
=
3
2

令x=-c,则y=±b
1-
c2
a2
=±
b2
a
,即有
2b2
a
=1,
又a2-b2=c2,解得,a=2,b=1.
则椭圆E:
x2
4
+y2=1;
(2)以O为极点,x轴的正半轴为极轴,建立极坐标系.
则椭圆的极坐标方程为ρ2(cos2θ+4sin2θ)=4,
设P(ρ1,θ),Q(ρ2,θ+
π
2
),(0<θ<
π
2
),
当P,Q运动时,假设存在定圆O,使得直线PQ都与定圆O相切.
则设定圆O的半径为r,则在三角形OPQ中,
1
2
r|PQ|=
1
2
|OP|•|OQ|,
即有r
ρ12+ρ22
1ρ2
即有r2•(
4
cos2θ+4sin2θ
+
4
sin2θ+4cos2θ
)=
4
cos2θ+4sin2θ
4
sin2θ+4cos2θ

化简得,4r2•5=16,解得,r2=
4
5

故当P,Q运动时,存在定圆O:x2+y2=
4
5
,使得直线PQ都与定圆O相切.
点评:本题考查椭圆的方程和性质,考查椭圆的极坐标方程及运用,考查化简和运算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

圆x2+y2=1与直线xsinα+y-1=0的位置关系为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={0,1,2},集合B={x|x-2<0},则A∩B=(  )
A、{0,1}
B、{0,2}
C、{1,2}
D、{0,1,2}

查看答案和解析>>

科目:高中数学 来源: 题型:

C:
x2
a2
+
y2
b2
=1(a>b>0),F1F2左右焦点,离心率为
1
2
,F1到点(2,1)距离
10

(Ⅰ)求椭圆C的标准方程;
(Ⅱ)过F2斜率为k(k不等于0)直线l与C交于EF两点,A为C右顶点,直线AE,AF交直线x=4于MN两点,过F2作直线l′,l′⊥l,求证直线l′过MN的中点.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知平面直角坐标系xOy中,三点(0,
3
),(
1
2
,2
2
),(1,-
3
2
)中有两个点在椭圆
x2
a2
+
y2
b2
=1(a>b>0)上,另一点在抛物线y2=2px(p>0)上.
(1)求椭圆与抛物线的方程;
(2)若直线y=k(x+1)(k≠0)交抛物线于P,Q两点.A,B分别是椭圆左,右顶点,求证:两直线AP,BQ交点在抛物线准线上.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正三棱柱ABC-A1B1C1的侧棱长为2,底面边长为1,M是BC的中点,在直线CC1上是否存在一点N,使得MN⊥AB1?若存在,求出它的位置,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设抛物线C1:y2=4x的准线与x轴交于点F1,焦点为F2,以F1、F2为焦点,离心率为
1
2
的椭圆记作C2
(1)求椭圆的标准方程;
(2)直线L经过椭圆C2的右焦点F2,与抛物线C1交于A1、A2两点,与椭圆C2交于B1、B2两点,当以B1B2为直径的圆经过F1时,求|A1A2|的长;
(3)若M是椭圆上的动点,以M为圆心,MF2为半径作⊙N,使得⊙M与⊙N恒相切,若存在,求出⊙N的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知动圆C过点A(1,0),且与定直线l0:x=-1相切.
(1)求动圆圆心C的轨迹D方程;
(2)设圆心C的轨迹在x≤4的部分为曲线E,过点P(0,2)的直线l与曲线E交于A,B两个不同的点,且
PA
PB
(λ>1),试求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数F(x)=|3x-1|+ax
(Ⅰ)当a=3时,解关于x的不等式f(x)≥|x-3|;
(Ⅱ)若f(x)≥x-
1
2
在R上恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案