精英家教网 > 高中数学 > 题目详情

【题目】椭圆的左、右焦点分别为,离心率为,过焦点且垂直于x轴的直线被椭圆C截得的线段长为1

求椭圆C的方程;

为椭圆C上一动点,连接,设的角平分线PM交椭圆C的长轴于点,求实数m的取值范围.

【答案】(1);(2)

【解析】

(1)由题意分别确定a,b的值求解椭圆方程即可;

(2)利用角平分线到两边的距离相等,结合椭圆方程分类讨论求解实数m的取值范围即可.

1由于,将代入椭圆方程,得

由题意知,即

故椭圆C的方程为

2

时,

时,直线的斜率不存在,易知

,则直线的方程为

由题意得

,同理可得

时,

设直线的方程分别为

由题意知

,且

整理得,

综合可得

时,同理可得

综上所述,m的取值范围是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】从某地区年龄在25~55岁的人员中,随机抽出100人,了解他们对今年两会的热点问题的看法,绘制出频率分布直方图如图所示,则下列说法正确的是( )

A. 抽出的100人中,年龄在40~45岁的人数大约为20

B. 抽出的100人中,年龄在35~45岁的人数大约为30

C. 抽出的100人中,年龄在40~50岁的人数大约为40

D. 抽出的100人中,年龄在35~50岁的人数大约为50

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数有两个极值点.

(1)求的取值范围;

(2)的两个极值点,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆的左、右焦点分别为,离心率为,过焦点且垂直于x轴的直线被椭圆C截得的线段长为1

求椭圆C的方程;

为椭圆C上一动点,连接,设的角平分线PM交椭圆C的长轴于点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

极坐标系的极点为直角坐标系的原点,极轴为轴的正半轴,两种坐标系中的长度单位相同,已知曲线的极坐标方程为.

(1)求的直角坐标方程;

(2)直线为参数)与曲线交于两点,与轴交于,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线与抛物线有一个公共点.

1)求抛物线方程;

2)斜率不为0的直线经过抛物线的焦点,交抛物线于两点.抛物线上是否存在两点关于直线对称?若存在,求出的斜率的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设集合 ,如果存在的子集同时满足如下三个条件:

两两交集为空集;

,则称集合具有性质.

(Ⅰ) 已知集合,请判断集合是否具有性质,并说明理由;

(Ⅱ)设集合,求证:具有性质的集合有无穷多个.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】经观测,某公路段在某时段内的车流量(千辆/小时)与汽车的平均速度(千米/小时)之间有函数关系:

1)在该时段内,当汽车的平均速度为多少时车流量最大?最大车流量为多少?(精确到0.01)

2)为保证在该时段内车流量至少为10千辆/小时,则汽车的平均速度应控制在什么范围内?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图:多面体中,四边形为矩形,二面角60°,

(1)求证:平面

(2)线段上一点,若锐二面角的正弦值为,求.

查看答案和解析>>

同步练习册答案