精英家教网 > 高中数学 > 题目详情
已知0≤a≤10(a为常数),在区间[0,10]上任取两个实数x,y,设“2x+y≤a”的概率为p,“x-2y≥a”的概率为q,若有p≤q,则实数a的取值范围
{0,5]
{0,5]
分析:利用几何概型,求出概率,p=
1
4
q=
(10-a)2
4a2
,再利用不等关系p≤q建立不等式,从而得解.
解答:解:由题意,“2x+y≤a”的概率为p,则p=
1
4

“x-2y≥a”的概率为q,则q=
(10-a)2
4a2

∵p≤q
1
4
(10-a)2
4a2

∴0≤a≤5
故答案为:[0,5].
点评:本题以概率为载体,考查不等式,关键是利用几何概型,求出概率,再利用不等关系建立不等式.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

18、某企业为打入国际市场,决定从A、B两种产品中只选择一种进行投资生产,已知投资生产这两种产品的有关数据如表:(单位:万美元)
年固定成本 每件产品成本 每件产品销售价 每年最多可生产的件数
A产品 20 m 10 200
B产品 40 8 18 120
其中年固定成本与年生产的件数无关,m是待定常数,其值由生产A产品的原材料决定,预计m∈[6,8],另外,年销售x件B产品时需上交0.05x2万美元的特别关税,假设生产出来的产品都能在当年销售出去.
(1)求该厂分别投资生产A、B两种产品的年利润y1,y2与生产相应产品的件数x之间的函数关系,并求出其定义域;
(2)如何投资才可获得最大年利润?请设计相关方案.

查看答案和解析>>

科目:高中数学 来源: 题型:

近年空气质量逐步恶化,雾霾天气现象出现增多,大气污染危害加重.大气污染可引起心悸、呼吸困难等心肺疾病.为了解某市心肺疾病是否与性别有关,在某医院随机的对入院50人进行了问卷调查得到了如下的列联表:
患心肺疾病 不患心肺疾病 合计
5
10
合计 50
已知在全部50人中随机抽取1人,抽到患心肺疾病的人的概率为
3
5

(Ⅰ)请将上面的列联表补充完整;
(Ⅱ)是否有99.5%的把握认为患心肺疾病与性别有关?说明你的理由;
(Ⅲ)已知在不患心肺疾病的5位男性中,有3位又患胃病.现在从不患心肺疾病的5位男性中,任意选出3位进行其他方面的排查,求恰好有一位患胃病的概率.
下面的临界值表供参考:
P(K2≥k) 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k 2.072 2.706 3.841 5.024 6.635 7.879 10.828
(参考公式K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
其中n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:

本题有(I)、(II)、(III)三个选作题,每题7分,请考生任选两题作答,满分14分.如果多做,则按所做的前两题记分,作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中.
(1)选修4-2:矩阵与变换
已知a∈R,矩阵P=
02
-10
,Q=
01
a0
,若矩阵PQ对应的变换把直线l1:x-y+4=0变为直线l2:x+y+4=0,求实数a的值.
(2)选修4-4:坐标系与参数方程
在极坐标系中,求圆C:ρ=2上的点P到直线l:ρ(cosθ+
3
sinθ)=6
的距离的最小值.
(3)选修4-5:不等式选讲
已知实数x,y满足x2+4y2=a(a>0),且x+y的最大值为5,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•湖北模拟)已知集合A={x|x2-3x-10<0},B={-2,-1,1,2,5,10},则A∩B中元素个数为(  )

查看答案和解析>>

同步练习册答案