精英家教网 > 高中数学 > 题目详情
14.函数f(x)=$\frac{2x-4}{4x+3}$,则f(0)=$-\frac{4}{3}$,f(a+2)=$\frac{2a}{4a+11}$.

分析 利用函数的解析式求解函数值以及函数的解析式即可.

解答 解:函数f(x)=$\frac{2x-4}{4x+3}$,则f(0)=$\frac{2×0-4}{4×0+3}$=-$\frac{4}{3}$,
f(a+2)=$\frac{2a+4-4}{4a+8+3}$=$\frac{2a}{4a+11}$.
故答案为:$-\frac{4}{3}$;$\frac{2a}{4a+11}$.

点评 本题考查函数的值的求法解析式的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.证明:$\frac{1+sin2x}{cos2x}$=tan$(\begin{array}{l}{\frac{π}{4}+x}\end{array})$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.求下列函数的n阶导数:
(1)ln(1+x);
(2)sin2x;
(3)xex
(4)$\frac{1}{\sqrt{1+x}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知抛物线C:y=x2-2x+4,直线l:y=kx,若l与C有两个不同的交点P、Q,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设双曲线的焦点坐标为(-6,0),(6,0),且双曲线过点A(-5,0),求双曲线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.函数f(x)=$\frac{1}{x+1}$+$\frac{1}{x+2}$+$\frac{1}{x+3}$+…+$\frac{1}{x+2015}$图象的对称中心的坐标为(-1008,0).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.定义在(1,+∞)上的函数f(x)满足下列两个条件:(1)对任意的x∈(1,+∞)恒有f(2x)=2f(x)成立; (2)当x∈(1,2]时,f(x)=(2-x)2;记函数g(x)=f(x)-k(x-1),若函数g(x)恰有两个零点,则实数k的取值范围是(  )
A.[1,2)B.[$\frac{4}{3}$,2]C.($\frac{4}{3}$,2)D.[$\frac{4}{3}$,2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知B1、B2是椭圆短轴的两个端点,O为椭圆的中心,过左焦点F1作长轴的垂线交椭圆于P,若|OF1|,|F1B2|,|B1B2|成等比数列,则 $\frac{|O{F}_{2}|}{|P{F}_{2}|}$的值是(  )
A.$\frac{\sqrt{2}}{2}$B.$\frac{\sqrt{2}}{3}$C.$\frac{\sqrt{3}}{2}$D.$\frac{2\sqrt{2}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知焦点在x轴上的椭圆经过点(0,$\sqrt{6}$),焦距为4.
(1)求椭圆的标准方程;
(2)求椭圆的离心率.

查看答案和解析>>

同步练习册答案