分析:(1)欲求在点(0,f(0))处的切线方程,只须求出其斜率的值即可,故先利用导数求出在x=0处的导函数值,再结合导数的几何意义即可求出切线的斜率.从而问题解决.
(2)求出函数的导数,令导数大于0解出其增区间,令导数小于0解出其减区间,并列出如图的x变化时,f'(x),f(x)变化表由表中数据判断最值即可
解答:解:(1)f′(x)=
-
x,k=f’(0)=1,f(0)=0
∴函数在点(0,f(0))处的切线方程:y=x
(2)令f′(x)=0,即
-
x=0,化简为x
2+x-2=0,解得x
1=-2(舍去),x
2=1.
当0≤x<1时,f′(x)>0,f(x)单调递增;当1<x≤2时,f′(x)<0,f(x)单调递减.
所以f(1)=ln2-
为函数f(x)的极大值.
又因为f(0)=0,f(2)=ln3-1>0,f(1)>f(2),
所以f(0)=0为函数f(x)在[0,2]上的最小值,
f(1)=ln2-
为函数f(x)在[0,2]上的最大值.
点评:本小题主要考查直线的斜率、导数的几何意义、利用导数研究曲线上某点切线方程\利用导数求闭区间上函数的最值,求解的关键是利用导数研究清楚函数的单调性以及根据最值的判断方法确定出函数的最值,此题规律性强,且固定,容易题.