精英家教网 > 高中数学 > 题目详情

【题目】已知函数
(1)当a=2时,求f(x)在x∈[0,1]的最大值;
(2)当0<a<1,f(x)在x∈[0,1]上的最大值和最小值之和为a,求a的值.

【答案】
(1)解:当a=2时,f(x)=2x+log2(x+1),

可得y=2x,y=log2(x+1)在[0,1]递增,

则f(x)在[0,1]递增,

可得f(1)取得最大值,且为2+log2(1+1)=3


(2)解:当0<a<1,可得y=ax,y=loga(x+1)在[0,1]递减,

则f(x)在[0,1]递减,

可得f(1)取得最小值,且为a+loga2;

f(0)取得最大值,且为1+loga1=1.

由题意可得1+a+loga2=a,

解得a=

即a的值为


【解析】(1)由a=2,根据增函数加增函数为增函数,可得f(1)取得最大值;(2)由0<a<1,根据减函数加减函数为减函数,可得f(x)的单调性,f(1)取得最小值,f(0)取得最大值,解方程可得a的值.
【考点精析】关于本题考查的函数的最值及其几何意义,需要了解利用二次函数的性质(配方法)求函数的最大(小)值;利用图象求函数的最大(小)值;利用函数单调性的判断函数的最大(小)值才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知某中学高三文科班学生共有800人参加了数学与地理的水平测试,学校决定利用随机数表法从中抽取100人进行成绩抽样调查,先将800人按001,002,…,800进行编号

(1)如果从第8行第7列的数开始向右读,请你依次写出最先检查的3个人的编号;(下面摘取了第7行到第9行)

84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76

63 01 63 78 59 16 95 56 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 79

33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54

(2)抽取的100人的数学与地理的水平测试成绩如下表:

成绩分为优秀、良好、及格三个等级;横向,纵向分别表示地理成绩与数学成绩,例如:表中数学成绩为良好的共有.

①若在该样本中,数学成绩优秀率是30%,求的值:

人数

数学

优秀

良好

及格

地理

优秀

7

20

5

良好

9

18

6

及格

4

②在地理成绩及格的学生中,已知 ,求数学成绩优秀的人数比及格的人数少的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

已知函数

(1)若曲线在点处的切线与直线垂直,求的值;

(2)若存在极小值时,不等式恒成立,求实数的取值范围;

(3)当时,如果存在两个不相等的正数,使得,求证:

请考生在第22、23两题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2﹣2|x|﹣3a
(1)当a=1时,在所给坐标系中,画出函数f(x)的图象,并求f(x)的单调递增区间
(2)若直线y=1与函数f(x)的图象有4个交点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数处的切线的斜率为1.

(1)如果常数,求函数在区间上的最大值;

(2)对于,如果方程上有且只有一个解,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x|2x2+ax+2=0,a∈R},B={x|x2+3x+2a=0,a∈R},A∩B={2}且A∪B=I,则(IA)∪(IB)=(
A.{﹣5, }
B.{﹣5, ,2}
C.{﹣5,2}
D.{ ,2}

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)(x∈R)满足f(﹣x)=2﹣f(x),若函数y= 与y=f(x)图象的交点为(x1 , y1),(x2 , y2),…,(xm , ym),则 (xi+yi)=(
A.0
B.m
C.2m
D.4m

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x|x2-6x+8<0},B={x|(xa)(x-3a)<0}.

(1)若xAxB的充分条件,求a的取值范围;

(2)若AB,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知关于的方程的三个实根分别为一个椭圆,一个抛物线,一个双曲线的离心率,则的取值范围(

A. B.

C. D.

查看答案和解析>>

同步练习册答案