【题目】已知函数
(1)当a=2时,求f(x)在x∈[0,1]的最大值;
(2)当0<a<1,f(x)在x∈[0,1]上的最大值和最小值之和为a,求a的值.
【答案】
(1)解:当a=2时,f(x)=2x+log2(x+1),
可得y=2x,y=log2(x+1)在[0,1]递增,
则f(x)在[0,1]递增,
可得f(1)取得最大值,且为2+log2(1+1)=3
(2)解:当0<a<1,可得y=ax,y=loga(x+1)在[0,1]递减,
则f(x)在[0,1]递减,
可得f(1)取得最小值,且为a+loga2;
f(0)取得最大值,且为1+loga1=1.
由题意可得1+a+loga2=a,
解得a= .
即a的值为
【解析】(1)由a=2,根据增函数加增函数为增函数,可得f(1)取得最大值;(2)由0<a<1,根据减函数加减函数为减函数,可得f(x)的单调性,f(1)取得最小值,f(0)取得最大值,解方程可得a的值.
【考点精析】关于本题考查的函数的最值及其几何意义,需要了解利用二次函数的性质(配方法)求函数的最大(小)值;利用图象求函数的最大(小)值;利用函数单调性的判断函数的最大(小)值才能得出正确答案.
科目:高中数学 来源: 题型:
【题目】已知某中学高三文科班学生共有800人参加了数学与地理的水平测试,学校决定利用随机数表法从中抽取100人进行成绩抽样调查,先将800人按001,002,…,800进行编号
(1)如果从第8行第7列的数开始向右读,请你依次写出最先检查的3个人的编号;(下面摘取了第7行到第9行)
84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76
63 01 63 78 59 16 95 56 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 79
33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54
(2)抽取的100人的数学与地理的水平测试成绩如下表:
成绩分为优秀、良好、及格三个等级;横向,纵向分别表示地理成绩与数学成绩,例如:表中数学成绩为良好的共有.
①若在该样本中,数学成绩优秀率是30%,求的值:
人数 | 数学 | |||
优秀 | 良好 | 及格 | ||
地理 | 优秀 | 7 | 20 | 5 |
良好 | 9 | 18 | 6 | |
及格 | 4 |
②在地理成绩及格的学生中,已知, ,求数学成绩优秀的人数比及格的人数少的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】
已知函数,.
(1)若曲线在点处的切线与直线垂直,求的值;
(2)若存在极小值时,不等式恒成立,求实数的取值范围;
(3)当时,如果存在两个不相等的正数,使得,求证:.
请考生在第22、23两题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x2﹣2|x|﹣3a
(1)当a=1时,在所给坐标系中,画出函数f(x)的图象,并求f(x)的单调递增区间
(2)若直线y=1与函数f(x)的图象有4个交点,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知集合A={x|2x2+ax+2=0,a∈R},B={x|x2+3x+2a=0,a∈R},A∩B={2}且A∪B=I,则(IA)∪(IB)=( )
A.{﹣5, }
B.{﹣5, ,2}
C.{﹣5,2}
D.{ ,2}
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)(x∈R)满足f(﹣x)=2﹣f(x),若函数y= 与y=f(x)图象的交点为(x1 , y1),(x2 , y2),…,(xm , ym),则 (xi+yi)=( )
A.0
B.m
C.2m
D.4m
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知集合A={x|x2-6x+8<0},B={x|(x-a)(x-3a)<0}.
(1)若x∈A是x∈B的充分条件,求a的取值范围;
(2)若A∩B=,求a的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com