精英家教网 > 高中数学 > 题目详情
4.若数列{an}是的递增等差数列,其中的a3=5,且a1,a2,a5成等比数列,
(1)求{an}的通项公式;
(2)设bn=$\frac{1}{({a}_{n}+1)({a}_{n+1}+1)}$,求数列{bn}的前项的和Tn
(3)是否存在自然数m,使得$\frac{m-2}{4}$<Tn<$\frac{m}{5}$对一切n∈N*恒成立?若存在,求出m的值;若不存在,说明理由.

分析 (1)利用等差数列的通项公式和等比中项的定义即可得到首项和公差,即可得到通项公式;
(2)bn=$\frac{1}{({a}_{n}+1)({a}_{n+1}+1)}$=$\frac{1}{4}$($\frac{1}{n}$-$\frac{1}{n+1}$),利用“裂项求和”即可得出数列{bn}的前n项和为Tn
(3)先确定$\frac{1}{8}$≤Tn<$\frac{1}{4}$,再根据使得$\frac{m-2}{4}$<Tn<$\frac{m}{5}$对一切n∈N*恒成立,建立不等式,即可求得m的值.

解答 解:(1)在等差数列中,设公差为d≠0,
由题意$\left\{\begin{array}{l}{{a}_{1}{a}_{5}={{a}_{2}}^{2}}\\{{a}_{3}=5}\end{array}\right.$,
∴$\left\{\begin{array}{l}{{a}_{1}({a}_{1}+4d)=({a}_{1}+d)^{2}}\\{{a}_{1}+2d=5}\end{array}\right.$,
解得$\left\{\begin{array}{l}{{a}_{1}=1}\\{d=2}\end{array}\right.$.
∴an=a1+(n-1)d=1+2(n-1)=2n-1.
(2)由(1)知,an=2n-1.
则bn=$\frac{1}{({a}_{n}+1)({a}_{n+1}+1)}$=$\frac{1}{2n•2(n+1)}$=$\frac{1}{4}$($\frac{1}{n}$-$\frac{1}{n+1}$),
所以Tn=$\frac{1}{4}$(1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{4}$+$\frac{1}{n}$-$\frac{1}{n+1}$)=$\frac{1}{4}$(1-$\frac{1}{n+1}$)=$\frac{n}{4(n+1)}$;
(3)Tn+1-Tn=$\frac{n+1}{4(n+2)}$-$\frac{n}{4(n+1)}$=$\frac{1}{4(n+1)(n+2)}$>0,
∴{Tn}单调递增,
∴Tn≥T1=$\frac{1}{8}$.
∵Tn=$\frac{n}{4(n+1)}$<$\frac{1}{4}$,
∴$\frac{1}{8}$≤Tn<$\frac{1}{4}$
$\frac{m-2}{4}$<Tn<$\frac{m}{5}$对一切n∈N*恒成立,则$\frac{1}{8}$≤$\frac{m}{5}$-$\frac{m-2}{4}$<$\frac{1}{4}$
∴$\frac{5}{4}$≤m<$\frac{5}{2}$
∵m是自然数,
∴m=2.

点评 本题考查数列的通项与求和,考查恒成立问题,求得数列的通项与和是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知p:方程${x^2}+2\sqrt{2}x+m=0$有两个不相等的实数根;q:不等式4x2+4(m-2)x+1>0的解集为R.若“p∨q”为真,“p∧q”为假,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设曲线y=f(x)在某点处的导数值为0,则过曲线上该点的切线(  )
A.垂直于x轴B.垂直于y轴
C.既不垂直于x轴也不垂直于y轴D.方向不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知f(x)=$\frac{2x}{{x}^{2}+6}$.
(1)若f(x)>k的解集为(-∞,-6)∪(-1,+∞),求k的值;
(2)若对任意的x>0,f(x)≤t恒成立,求实数t的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.集合A={直线l|直线l的方程是(m+3)x+(m-2)y-1-2m=0},集合B={直线l|直线l是x2+y2=2的切线},则A∩B=(  )
A.B.{(1,1)}C.{(x,y)|x+y-2=0}D.{(x,y)|3x-2y-1=0}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设全集U=R,集合A={x|x≥0},B={x|(x-3)(x+1)<0},则(∁UA)∩B=(  )
A.{x|-3<x<0}B.{x|-1<x<0}C.{x|0<x<1}D.{x|0<x<3}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.某船在A处向正东方向航行xkm后到达B处,然后沿南偏西60°方向航行3km到达C处.若A与C相距$\sqrt{3}$km,则x的值是(  )
A.3B.$\sqrt{3}$或2$\sqrt{3}$C.2$\sqrt{3}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.如图甲是某条公共汽车线路收支差额y与乘客量x的图象(收支差额=车票收入-支出费用),由于目前本条线路亏损,公司有关人员提出了两条建议:建议

(Ⅰ)是不改变车票价格,减少支出费用;建议
(Ⅱ)是不改变支出费用,提高车票价格.下面给出四个图象:在这些图象中,(1)反映了建议(Ⅰ),(3)反映了建议(Ⅱ)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.命题“?x>0,(x+1)ex>1”的否定是假命题(填真命题/假命题).

查看答案和解析>>

同步练习册答案