精英家教网 > 高中数学 > 题目详情
1.已知某几何体的俯视图是如图所示的边长为2的正方形,正视图与侧视图是边长为2的正三角形,则该几何体的体积是$\frac{4\sqrt{3}}{3}$.

分析 根据几何体的三视图,得出该几何体是底面为正方形的正四棱锥,结合图中数据求出它的体积.

解答 解:根据几何体的三视图,得;
该几何体是底面边长为2的正方形,斜高为2的四棱锥,
且四棱锥的高为$\sqrt{{2}^{2}{-1}^{2}}$=$\sqrt{3}$的正四棱锥.
∴它的体积为V=$\frac{1}{3}$×22×$\sqrt{3}$=$\frac{4\sqrt{3}}{3}$.
故答案为:$\frac{4\sqrt{3}}{3}$.

点评 本题考查了利用空间几何体的三视图求体积的问题,也考查了空间想象能力的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.已知函数$f(x)=\frac{1}{{\sqrt{x}+\sqrt{x-1}}}$,程序框图如图所示,若输出的结果S=10,则判断框中可以填入的关于n的判断条件是(  )
A.n≤100?B.n≤99?C.n>100?D.n>99?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.对定义域分别为D1,D2的函数y=f(x),y=g(x),规定:函数h(x)=$\left\{\begin{array}{l}{f(x)•g(x),x∈{D}_{1}且x∈{D}_{2}}\\{f(x),x∈{D}_{1}且x∉{D}_{2}}\\{g(x),x∉{D}_{1}且x∈{D}_{2}}\end{array}\right.$.若f(x)=x-2(x≥1),g(x)=-2x+3(x≤2),则h(x)的解析式h(x)=$\left\{\begin{array}{l}{(x-2)(-2x+3),1≤x≤2}\\{x-2,x>2}\\{-2x+3,x<1}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知命题p:函数f(x)=sinxcosx的单调递增区间[$kπ-\frac{π}{4}$,$kπ+\frac{π}{4}$](k∈Z);命题q:函数g(x)=sin(x+$\frac{π}{2}$) 的图象关于原点对称,则下列命题中为真命题的是(  )
A.p∧qB.p∨qC.-pD.(-p)∨q

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.函数f(x)=$\left\{\begin{array}{l}2x,0≤x≤1\\ 1,1<x<2\\ 3,x≥2\end{array}$的值域是(  )
A.RB.[0,2]∪{3}C.[0,+∞)D.[-3,3]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.函数f(x)=2sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的部分图象如图所示,则f(0)的值是-$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.定义在(0,+∞)上的函数f(x)满足:?x∈(0,+∞),2f(x)<xf′(x)<3f(x)恒成立,其中f′(x)为f(x)的导函数,则(  )
A.$\frac{1}{16}$<$\frac{f(1)}{f(2)}$<$\frac{1}{8}$B.$\frac{1}{8}$<$\frac{f(1)}{f(2)}$<$\frac{1}{4}$C.$\frac{1}{4}$<$\frac{f(1)}{f(2)}$<$\frac{1}{3}$D.$\frac{1}{3}$<$\frac{f(1)}{f(2)}$<$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若圆C1的方程是x2+y2-4x-4y+7=0,圆C2的方程为x2+y2-4x-10y+13=0,则两圆的公切线有(  )
A.2条B.3条C.4条D.1条

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.现代城市大多是棋盘式布局(如上海道路几乎都是东西和南北走向).在这样的城市中,我们说的两点间的距离往往不是指两点间的直线距离(位移),而是实际路程(如图).在直角坐标平面内,我们定义A(x1,y1)、B(x2,y2)两点间的“直角距离”为:D(AB)=|x1-x2|+|y1-y2|.
(1)在平面直角坐标系中,写出所有满足到原点的“直角距离”
为2的“格点”的坐标;(格点指横、纵坐标均为整数的点)
(2)定义:“圆”是所有到定点“直角距离”为定值的点组成的图形,点A(1,3),B(1,1),C(3,3),求经过这三个点确定的一个“圆”的方程,并画出大致图象;
(3)设P(x,y),集合B表示的是所有满足D(PO)≤1的点P所组成的集合,
点集A={(x,y)|-1≤x≤1,-1≤y≤1},
求集合Q={(x,y)|x=x1+x2,y=y1+y2,(x1,y1)∈A,(x2,y2)∈B}所表示的区域的面积.

查看答案和解析>>

同步练习册答案