精英家教网 > 高中数学 > 题目详情
设函数f(x)=x(9-x),对于任意给定的m位自然数n0=
.
amam-1a2a1
(其中a1是个位数字,a2是十位数字,…),定义变换A:A(n0)=f(a1)+f(a2)+…+f(am).并规定A(0)=0.记n1=A(n0),n2=A(n1),…,nk=A(nk-1),….
(Ⅰ)若n0=2015,求n2015
(Ⅱ)当m≥3时,证明:对于任意的m(m∈N*)位自然数n均有A(n)<10m-1
(Ⅲ)如果n0<10m(m∈N*,m≥3),写出nm的所有可能取值.(只需写出结论)
考点:进行简单的合情推理
专题:推理和证明
分析:(Ⅰ)由已知中变换A:A(n0)=f(a1)+f(a2)+…+f(am).并规定A(0)=0.记n1=A(n0),n2=A(n1),…,nk=A(nk-1),将n0=2015,代入可得答案.
(Ⅱ)由函数f(x)=x(9-x)=-(x-
9
2
)2+
81
4
,可得对于非负整数x,均有f(x)=x(9-x)≤20.当x=4或5时,取到最大值,故 A(n)≤20m,令 g(m)=10m-1-20m,分析函数的最值上,可得结论;
(Ⅲ)如果n0<10m(m∈N*,m≥3),则nm的所有可能取值为0,8,14,16,20,22,26,28,32,36,38.
解答: 解:(Ⅰ)n1=14+0+8+20=42,
n2=20+14=34,
n3=18+20=38,
n4=18+8=26,
n5=14+18=32,
n6=18+14=32,

所以 n2015=32.                                            …(3分)
证明:(Ⅱ)因为函数f(x)=x(9-x)=-(x-
9
2
)2+
81
4

所以对于非负整数x,知f(x)=x(9-x)≤20.(当x=4或5时,取到最大值)…(4分)
因为 A(n)=f(a1)+f(a2)+…+f(am),
所以 A(n)≤20m.                                         …(6分)
令 g(m)=10m-1-20m,则g(3)=103-1-20×3>0.
当m≥3时,g(m+1)-g(m)=10m-20(m+1)-10m-1+20m=9×10m-1-20>0,
所以 g(m+1)-g(m)>0,函数g(m),(m∈N,且m≥3)单调递增.
故 g(m)≥g(3)>0,即10m-1>20m≥A(n).
所以当m≥3时,对于任意的m位自然数n均有A(n)<10m-1.…(9分)
解:(Ⅲ)nm的所有可能取值为0,8,14,16,20,22,26,28,32,36,38.
…(14分)
点评:本题考查的知识点是合情推理,其中正解理解变换A:A(n0)=f(a1)+f(a2)+…+f(am).及规定A(0)=0.记n1=A(n0),n2=A(n1),…,nk=A(nk-1)的含义是解答的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若a是从集合{1,2,3,4}中随机抽取的一个数,b是从集合{1,2,3}中抽取的一个数,则关于x的方程x2+2ax+b2=0有实数根的概率是(  )
A、
5
12
B、
7
12
C、
3
4
D、
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

在极坐标系中,已知曲线C1:ρ=2与曲线C2:ρsin(θ-
π
4
)=
2
交于不同的两点A,B,求AB的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题中真命题的个数有(  )
(1)集合{小于1的正有理数}是一个有限集;
(2)集合{y|y=x2-1}与集合{(x,y)|y=x2-1}是同一个集合;
(3)1,
3
2
6
4
,|-
1
2
|,0.5,这些数组成的集合有5个元素;
(4)集合{(x,y)|xy≤0,x,y∈R}是指第二和第四象限内的点集.
A、0个B、1个C、2个D、3个

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数y=log2(x-1)图象上第一象限有一点A到x轴的距离为1,与x轴的交点为B,则(
OA
+
OB
AB
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的函数f(x)满足f(1)=l,且对一切x∈R都有f′(x)<4,则不等式f(x)>4x-3的解集为(  )
A、(-∞,0)
B、(0,+∞)
C、(-∞,1)
D、(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

一个几何体的三视图如图所示,则该几何体的体积是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角坐标系xoy中,曲线C的参数方程为
x=1+sin2θ
y=2sinθ+2cosθ
(θ为参数).若以直角坐标系的原点为极点,x轴的正半轴为极轴建立极坐标系,曲线M的极坐标方程为ρsin(θ-
π
4
)=
2
2
a(其中a为常数)
(1)当a=
9
10
时,曲线M与曲线C有两个交点A,B.求|AB|的值;
(2)若曲线M与曲线C只有一个公共点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
b
为单位向量,且
a
b
=m,则|
a
+t
b
|(t∈R)的最小值为(  )
A、
1+m2
B、1
C、|m|
D、
1-m2

查看答案和解析>>

同步练习册答案