科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
某造船公司年最高造船量是20艘. 已知造船x艘的产值函数R (x)=3700x + 45x2 – 10x3(单位:万元), 成本函数为C (x) = 460x + 5000 (单位:万元). 又在经济学中,函数f(x)的边际函数Mf (x)定义为: Mf (x) = f (x+1) – f (x). 求:(提示:利润 = 产值 – 成本)
(1) 利润函数P(x) 及边际利润函数MP(x);
(2) 年造船量安排多少艘时, 可使公司造船的年利润最大?
(3) 边际利润函数MP(x)的单调递减区间, 并说明单调递减在本题中的实际意义是什么?
查看答案和解析>>
科目:高中数学 来源:不详 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:
某造船公司年最高造船量是20艘,已知造船x艘的产值为R(x)=3700x+45x2﹣10x3(万元),成本函数为C(x)=460x+5000(万元).又在经济学中,函数f(x)的边际函数Mf(x)定义为M f(x)=f(x+1)﹣f(x)求:
(1)利润函数p(x)及边际利润函数M p(x);
(2)年造船量安排多少艘时,可使公司造船的年利润最大?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com