精英家教网 > 高中数学 > 题目详情

【题目】命题实数满足其中,命题实数满足

1,且为真,求实数的取值范围;

2的充分不必要条件,求实数的取值范围

【答案】12

【解析】

试题分析:1首先由一元二次不等式可得命题为真时实数的取值范围,然后求解不等式组可得出命题为真时实数的取值范围,再由真值表即可得出真且假,最后运用补集的思想即可得出实数的取值范围;21可求出所满足实数的取值范围,再由的充分不必要条件,即可得出实数的取值范围

试题解析1,又,所以,当时,,即为真时实数的取值范围是

,得,解得

为真时实数的取值范围是

为真,则真且假,所以实数的取值范围是

,则的充分不必要条件,则

解得,故实数的取值范围是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若方程有两个小于2的不等实根,求实数a的取值范围;

(2)若不等式对任意恒成立,求实数a的取值范围;

(3)若函数在[0,2]上的最大值为4,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】正方体的棱长为1,分别是棱的中点,过直线的平面分别与棱交于,设,给出以下四个命题:

四边形为平行四边形;

若四边形面积,,有最小值;

若四棱锥的体积,则为常函数;

若多面体的体积,则为单调函数.

其中假命题为( )

A. ① ③ B. ② C. ③④ D. ④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知圆,圆

(1)若过点的直线被圆截得的弦长为,求直线的方程;

(2)圆是以1为半径,圆心在圆上移动的动圆 ,若圆上任意一点分别作圆 的两条切线,切点为,求的取值范围;

(3)若动圆同时平分圆的周长、圆的周长,则动圆是否经过定点?若经过,求出定点的坐标;若不经过,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知两条直线l1:axby+4=0,l2:(a1)x+y+b=0. 求满足下列条件的a,b值.

)l1l2且l1过点(3,1);

)l1l2且原点到这两直线的距离相等.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在上的函数满足:,当时,.

1求证:为奇函数;

2求证:上的增函数;

3解关于的不等式:.(其中为常数).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图四边形是矩形的中点交于点平面.

求证:

求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列的前三项分别为λ6n项和为SnSk=165.

(1)λk的值;

(2)bn且数列的前n项和Tn证明:Tn<1.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合Z={(x,y)|x∈[0,2],y[-1,1]}.

(1)若x,yZ求x+y≥0的概率;

(2)若x,yR求x+y≥0的概率.

查看答案和解析>>

同步练习册答案