精英家教网 > 高中数学 > 题目详情
(2013•枣庄一模)设函数f(x)=
x
4
 
-ax(a>0)
的零点都在区间[0,5]上,则函数g(x)=
1
x
与函数h(x)=
x
3
 
-a
的图象的交点的横坐标为正整数时实数a的取值个数为(  )
分析:分析:由题意根据函数f(x)=x4-ax(a>0)的零点都在区间[0,5]上可得a的范围,然后然后再进行判断.
解答:解:∵函数f(x)=x4-ax(a>0)的零点都在区间[0,5]上,又f(x)=x4-ax=x(x3-a)
令f(x)=0,
∴x=0,或x=
3a

3a
≤5

∴a≤125
1
x
=x3-a
可得a=x3-
1
x

令F(x)=x3-
1
x
(x≠0),则F′(x)=3x2+
1
x2
>0恒成立
∴F(x)在(0,+∞)上单调递增,在(-∞,0)上单调递增且F(1)=F(-1)=0
0<x3-
1
x
<125

当x=2,3,4,5时满足题意
故选B
点评:此题考查函数的零点与方程根的关系,解题的关键是求出f(x)在区间[0,5]上的值域,是一道好题,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•枣庄一模)某课题组进行城市空气质量调查,按地域把24个城市分成甲、乙、丙三组,对应城市数分别为4、12、8.若用分层抽样抽取6个城市,则甲组中应抽取的城市数为
1
1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•枣庄一模)已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0),⊙O:x2+y2=b2,点A,F分别是椭圆C的左顶点和左焦点,点P是⊙O上的动点.
(1)若P(-1,
3
),PA是⊙O的切线,求椭圆C的方程;
(2)是否存在这样的椭圆C,使得
PA
PF
是常数?如果存在,求C的离心率,如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•枣庄一模)已知函数f(x)=x2+1的定义域为[a,b](a<b),值域为[1,5],则在平面直角坐标系内,点(a,b)的运动轨迹与两坐标轴围成的图形的面积为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•枣庄一模)设z=x+y,其中x,y满足
x+2y≥0
x-y≤0
0≤y≤k
,若z的最大值为6,则z的最小值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•枣庄一模)下列命题的否定为假命题的是(  )

查看答案和解析>>

同步练习册答案