精英家教网 > 高中数学 > 题目详情

【题目】某班数学兴趣小组对函数y=﹣x2+2|x|+1的图象和性质进行了探究,探究过程如下,请补充完整.

1)自变量x的取值范围是全体实数,xy的几组对应值列表如下:

x

3

2

1

0

1

2

3

y

2

m

2

1

2

1

2

其中,m  

2)根据上表数据,在如图所示的平面直角坐标系中描点,画出了函数图象的一部分,请画出该函数图象的另一部分.

3)观察函数图象,写出两条函数的性质./p>

4)进一步探究函数图象发现:

①方程﹣x2+2|x|+10  个实数根;

②关于x的方程﹣x2+2|x|+1a4个实数根时,a的取值范围是  

【答案】11;(2)答案见解析;(3)①函数的最大值是2,没有最小值;②当x1时,yx的增大而减小;(答案不唯一)(4)①2;②1a2

【解析】

1)根据对称性或直接代数计算即可得答案;

2)描点画出图形即可;

3)可写函数的最大值和最小值问题,也可确定一个范围写增减性问题(答案不唯一);

4)①当y=0时,图象与x轴的交点有两个,则方程有2个实数根;②直线y=a与图象有4个交点,即表示方程有4个实根,据此结合图象确定a的范围即可.

1)当时,,所以m=1

故答案为:1;

2)根据表格数据,描点画图如下:

3)根据图象可知,函数具有如下性质:①函数的最大值是2,没有最小值;②当x1时,yx的增大而减小;(答案不唯一)

4)①由图象可知:函数图象与x轴有两个交点,

所以方程﹣x2+2|x|+102个实数根,

故答案为:2

②方程﹣x2+2|x|+1a4个实数根时,

即表示ya与图象有4个交点,

故由图象可知,a的取值范围是:1a2

故答案为:1a2

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,四边形为矩形,且平面, ,的中点.

(1)求证:

(2)求三棱锥的体积;

(3)探究在上是否存在点,使得平面,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1求曲线处的切线方程

2证明

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在学习函数时,我们经历了“确定函数的表达式利用函数图象研究其性质——运用函数解决问题“的学习过程,在画函数图象时,我们通过列表、描点、连线的方法画出了所学的函数图象.同时,我们也学习过绝对值的意义

结合上面经历的学习过程,现在来解决下面的问题:

在函数中,当时,;当时,

1)求这个函数的表达式;

2)在给出的平面直角坐标系中,请直接画出此函数的图象并写出这个函数的两条性质;

3)在图中作出函数的图象,结合你所画的函数图象,直接写出不等式的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业开发生产了一种大型电子产品,生产这种产品的年固定成本为2500万元,每生产百件,需另投入成本(单位:万元),当年产量不足30百件时,;当年产量不小于30百件时,;若每件电子产品的售价为5万元,通过市场分析,该企业生产的电子产品能全部销售完.

1)求年利润(万元)关于年产量(百件)的函数关系式;

2)年产量为多少百件时,该企业在这一电子产品的生产中获利最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=loga)(0<a<1,b>0)为奇函数,当x∈(﹣1,a]时,函数y=fx)的值域是(﹣∞,1].

(1)确定b的值;

(2)证明函数y=fx)在定义域上单调递增,并求a的值;

(3)若对于任意的t∈R,不等式ft2﹣2t)+f(2t2k)>0恒成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,且a2=2b.

(1)求椭圆的方程;

(2)直线l:x﹣y+m=0与椭圆交于A,B两点,是否存在实数m,使线段AB的中点在圆x2+y2=5上,若存在,求出m的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于函数,下列个结论正确的是__________(把你认为正确的答案全部写上).

(1)任取,都有

(2)函数上单调递增;

(3),对一切恒成立;

(4)函数个零点;

(5)若关于的方程有且只有两个不同的实根,则.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】试比较3-(n为正整数)的大小,并予以证明.

查看答案和解析>>

同步练习册答案