精英家教网 > 高中数学 > 题目详情

已知函数f(x)=ex(axb)-x2-4x,曲线yf(x)在点(0,f(0))处的切线方程为y=4x+4.
(1)求ab的值;
(2)讨论f(x)的单调性,并求f(x)的极大值.

(1)a=4,b=4(2)单调增区间为(-∞,-2),
单调减区间为,4-4e-2.

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

求下列各函数的导数:
(1)y=(x+1)(x+2)(x+3).
(2)y=+.
(3)y=e-xsin2x.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=ax+ln x,其中a为常数,e为自然对数的底数.
(1)当a=-1时,求f(x)的最大值;
(2)当a=-1时,试推断方程|f(x)|=是否有实数解,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=x2-(1+2a)xaln x(a为常数).
(1)当a=-1时,求曲线yf(x)在x=1处切线的方程;
(2)当a>0时,讨论函数yf(x)在区间(0,1)上的单调性,并写出相应的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数f(x)=axn(1-x)+b(x>0),n为正整数,ab为常数.曲线yf(x)在(1,f(1))处的切线方程为xy=1.
(1)求ab的值;
(2)求函数f(x)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=ln x+2x-6.
(1)证明:函数f(x)有且只有一个零点;
(2)求该零点所在的一个区间,使这个区间的长度不超过

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=.
(1)函数f(x)在点(0,f(0))的切线与直线2xy-1=0平行,求a的值;
(2)当x∈[0,2]时,f(x)≥恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数f(x)=(x+1)ln x-2x.
(1)求函数的单调区间;
(2)设h(x)=f′(x)+,若h(x)>k(k∈Z)恒成立,求k的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知为函数图象上一点,O为坐标原点,记直线的斜率
(Ⅰ)若函数在区间上存在极值,求实数m的取值范围;
(Ⅱ)设,若对任意恒有,求实数的取值范围.

查看答案和解析>>

同步练习册答案