精英家教网 > 高中数学 > 题目详情
2.等轴双曲线C的中心在原点,右焦点与抛物线${y^2}=8\sqrt{2}x$的焦点重合,则C的实轴长为(  )
A.$\sqrt{2}$B.2$\sqrt{2}$C.4D.8

分析 设出双曲线方程,求出抛物线的焦点坐标,即可求得结论

解答 解:设等轴双曲线C的方程为x2-y2=λ.(1)
∵抛物线${y^2}=8\sqrt{2}x$,2p=$8\sqrt{2}$,∴$\frac{p}{2}$=2$\sqrt{2}$.
∵右焦点与抛物线${y^2}=8\sqrt{2}x$的焦点重合,
∴2λ=8,
∴λ=4,
∴C的实轴长为4,
故选:C.

点评 本题考查抛物线,双曲线的几何性质,考查学生的计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.设不等式组$\left\{\begin{array}{l}{x+y≤2}\\{2x-y≤1}\\{x≥0,y≥0}\end{array}\right.$表示的平面区域为D,向区域D内任投一点P,则点P落在圆x2+y2=2内的概率为$\frac{5}{π+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若f(x+1)=x2+2x+2,则f(2)=5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在正方体ABCD-A1B1C1D1中,三棱锥D1-AB1C的表面积与正方体的表面积的比为(  )
A.1:1B.1;$\sqrt{2}$C.1:$\sqrt{3}$D.1;2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知等差数列{an}、{bn}前n项的和分别是Sn、Tn,若$\frac{{S}_{n}}{{T}_{n}}$=$\frac{2n}{3n+1}$,则$\frac{a_8}{b_8}$=$\frac{15}{23}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知双曲线方程为C:$\frac{{x}^{2}}{k-2}$-$\frac{{y}^{2}}{1-k}$=1.
(1)求k的取值范围;
(2)求双曲线C的焦点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.某几何体的三视图如图所示.则该几何体的体积为(  )
A.πB.$\frac{3π}{2}$C.$\frac{5π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.一个动点到直线x=8的距离是它到点A(2,0)的距离的2倍,求动点的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知p:-2≤x≤5,q:m+1≤x≤2m-1,若q是p的充分条件,求实数m的取值范围.

查看答案和解析>>

同步练习册答案