精英家教网 > 高中数学 > 题目详情
已知m、n是直线,α、β、γ是平面,给出下列命题:
①α⊥β,α∩β=m,m⊥n,则n⊥α或n⊥β;
②若α∥β,α∩γ=m,β∩γ=n,则m∥n;
③如果直线m与平面β内的一条直线平行,那么m∥β;
④若α∩β=m,n∥m,且n?α,n?β,则n∥α且n∥β.
所有正确命题的序号是
②④
②④
分析:①利用面面垂直和线面垂直的定义判断.②利用面面平行的性质判断.③利用线面平行的定义判断.④利用线面平行的定义和判定定理判断.
解答:解:①根据面面垂直的性质可知,当α⊥β,α∩β=m,m⊥n时,n可能和α,β都相交,不一定平行,所以①错误.
②根据面面平行的性质定理可知,两个平行平面同时和第三个平面相交,则交线平行,所以②正确.
③当直线m?β时,结论正确,当m?β时,结论不成立,所以③错误.
④若α∩β=m,n∥m且n?α,n?β,则n∥α且n∥β,所以根据平行线的传递性可知④正确.
故答案为:②④.
点评:本题考查空间中直线与平面之间的位置关系,要求熟练掌握相应的判定定理和性质定理.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

12、已知m,n是直线,α、β、γ是平面,给出下列命题:
①α⊥γ,β⊥γ,则α∥β;
②若n⊥α,n⊥β,则α∥β;
③若n?α,m?α且n∥β,m∥β,则α∥β;
④若m,n为异面直线,n?α,n∥β,m?β,m∥α,则α∥β.
则其中正确的命题是
②④
.(把你认为正确的命题序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知m,n 是直线,α,β,γ,是平面,给出下列命题:
(1)若α⊥β,α∩β=m,m⊥n,则n⊥α或n⊥β;
(2)若α∥β,α∩γ=m,β∩γ=n,则m∥n;
(3)若α∩β=m,n∥m,则n∥α且n∥β;
(4)m∥n,则m、n与α所成的角相等.
其中正确的命题序号为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2004•河西区一模)已知m,n是直线,α、β、γ是平面,有下面四个命题:
①若m∥n,n?α,则m∥α;
②若α⊥γ,β⊥γ,则α∥β;
③若m⊥α,n⊥β,m⊥n,则α⊥β;
④若α∥β,β∥γ,m⊥α,则m⊥γ.
其中正确的两个命题是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•孝感模拟)已知m,n 是直线,α,β,γ是平面,给出下列命题:
(1)若α⊥β,α∩β=m,m⊥n,则n⊥α或n⊥β
(2)若α∥β,α∩γ=m,β∩γ=n,则m∥n
(3)若α∩β=m,n∥m,则n∥α且n∥β
(4)若直线m不垂直于α,则m也可能垂直于α内的无数条直线
其中正确的命题序号为(  )

查看答案和解析>>

同步练习册答案