【题目】近几年,我国鲜切花产业得到了快速发展,相关部门制定了鲜切花产品行业等级标准,统一使用综合指标值进行衡量,如下表所示.某花卉生产基地准备购进一套新型的生产线,现进行设备试用,分别从新旧两条生产线加工的产品中选取30个样品进行等级评定,整理成如图所示的茎叶图.
综合指标 | |||
质量等级 | 三级 | 二级 | 一级 |
(Ⅰ)根据茎叶图比较两条生产线加工的产品的综合指标值的平均值及分散程度(直接给出结论即可);
(Ⅱ)若从等级为三级的样品中随机选取3个进行生产流程调查,其中来自新型生产线的样品个数为,求的分布列;
(Ⅲ)根据该花卉生产基地的生产记录,原有生产线加工的产品的单件平均利润为4元,产品的销售率(某等级产品的销量与产量的比值)及产品售价如下表:
三级花 | 二级花 | 一级花 | |
销售率 | |||
单件售价 | 12元 | 16元 | 20元 |
预计该新型生产线加工的鲜切花单件产品的成本为span>10元,日产量3000件.因为鲜切花产品的保鲜特点,未售出的产品统一按原售价的50%全部处理完.如果仅从单件产品利润的角度考虑,该生产基地是否需要引进该新型生产线?
【答案】(I)新型生产线综合指标值的平均值高于旧生产线的平均值,旧生产线的综合指标值相对来说更为集中;
(II)
X | 0 | 1 | 2 | 3 |
P |
(III)该生产基地需要引进该新型生产线.
【解析】
(I)由茎叶图得新型生产线综合指标值的平均值高于旧生产线的平均值,旧生产线的综合指标值相对来说更为集中;
(II)由题意得等级为三级的样品共有8个,其中来自旧生产线的5个,新生产线的3个,随机变量X的取值为0,1,2,3,分别求出相应的概率,由此能求出X的分布列;
(Ⅲ)由茎叶图知该新型生产线加工的产品为三等品的概率为,二等品的概率为,一等品的概率,30000件产品中,三等品、二等品、一等品的件数的估计值分别为300件,1600件,1100件,求出单件产品利润,得到该生产基地需要引进新型生产线.
(Ⅰ)由茎叶图可以看出,新型生产线综合指标值的平均值高于旧生产线的平均值;生产线的综合指标值相对于新型生产线来说更为集中.
(II)由題意可知,等级为三级的样品共有8个,其中来自旧生产线的5个,新生产线的3个,随机变量的取值为0,1,2,3,
,
,
则的分布列为
0 | 1 | 2 | 3 | |
(Ⅲ)由茎叶图可知,该新型生产线加工的产品为三等品的概率,
二等品的概率,一等品的概率,
故3000件产品中,三等品、二等品、一等品的件数的估计值分别为300件,1600件,1100件,
三等品日销售总利润为(元),
二等品日销售总利润为(元),
一等品日销售总利润为(元),
∴(元).
故产品的单件平均利润的估计值为4.88元,高于4元,
综上,该生产基地需要引进该新型生产线.
科目:高中数学 来源: 题型:
【题目】雷达图(Radar Chart),又可称为戴布拉图、蜘蛛网图(Spider Chart),原先是财务分析报表的一种,现可用于对研究对象的多维分析.图为甲、乙两人在五个方面的评价值的雷达图,则下列说法不正确的是( )
A.甲、乙两人在次要能力方面的表现基本相同
B.甲在沟通、服务、销售三个方面的表现优于乙
C.在培训与销售两个方面上,甲的综合表现优于乙
D.甲在这五个方面的综合表现优于乙
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线上的点到点的距离比到直线的距离小.
(1)求曲线的方程;
(2)设为曲线上任意一点,点,问是否存在垂直于轴的直线,使得被以为直径的圆是的弦长恒为定值?若存在,求出的方程和定值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】等差数列和等比数列中, ,,是前项和.
(1)若 ,求实数的值;
(2)是否存在正整数,使得数列的所有项都在数列中?若存在,求出所有的,若不存在,说明理由;
(3)是否存在正实数,使得数列中至少有三项在数列中,但中的项不都在数列中?若存在,求出一个可能的的值,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆是椭圆内任一点.设经过的两条不同直线分别于椭圆交于点记的斜率分别为
(1)当经过椭圆右焦点且为中点时,求:
①椭圆的标准方程;
②四边形面积的取值范围.
(2)当时,若点重合于点,且.求证:直线过定点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“一带一路”是“丝绸之路经济带”和“21世纪海上丝绸之路”的简称,旨在积极发展我国与沿线国家经济合作关系,共同打造政治互信、经济融合、文化包容的命运共同体.自2015年以来,“一带一路”建设成果显著.如图是2015—2019年,我国对“一带一路”沿线国家进出口情况统计图,下列描述错误的是( )
A.这五年,出口总额之和比进口总额之和大
B.这五年,2015年出口额最少
C.这五年,2019年进口增速最快
D.这五年,出口增速前四年逐年下降
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】假如你的公司计划购买台机器,该种机器使用三年后即被淘汰,在购进机器时,可以一次性额外购买几次维修服务,每次维修服务费用200元,另外实际维修一次还需向维修人员支付小费,小费每次50元,在机器使用期间,如果维修次数超过购机时购买的维修服务次数,则每维修一次需支付维修服务费用500元,无需支付小费,现需决策在购买机器时应同时一次性购买几次维修服务,为此搜集并整理了100台这种机器在三年使用期内的维修次数,得下面统计表:
维修次数 | 8 | 9 | 10 | 11 | 12 |
频数 | 10 | 20 | 30 | 30 | 10 |
记表示1台机器在三年使用期内的维修次数,表示1台机器在维修上所需的费用(单位:元),表示购机的同时购买的维修服务次数.
(1)若,求与的函数解析式.
(2)若要求“维修次数不大于”的频率不小于0.8,求的值.
(3)假设这100台机器在购机的同时每台都购买10次维修服务,或每台都购买11次维修服务,分别计算这100台机器在维修上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买10次还是11次维修服务?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】健身馆某项目收费标准为每次60元,现推出会员优惠活动:具体收费标准如下:
消费次数 | 第1次 | 第2次 | 第3次 | 不少于4次 |
收费比例 | 0.95 | 0.90 | 0.85 | 0.80 |
现随机抽取了100位会员统计它们的消费次数,得到数据如下:
消费次数 | 1次 | 2次 | 3次 | 不少于4次 |
频数 | 60 | 25 | 10 | 5 |
假设该项目的成本为每次30元,根据给出的数据回答下列问题:
(1)估计1位会员至少消费两次的概率
(2)某会员消费4次,求这4次消费获得的平均利润;
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com