精英家教网 > 高中数学 > 题目详情

如图,四棱柱ABCD-A1B1C1D1的底面ABCD是平行四边形,E,F分别在棱BB1,DD1上,且AF∥EC1
(1)求证:AE∥FC1
(2)若AA1⊥平面ABCD,四边形AEC1F是边长为数学公式的正方形,且BE=1,DF=2,求线段CC1的长,并证明:AC⊥EC1

解:(1)∵四棱柱ABCD-A1B1C1D1的底面ABCD是平行四边形,
∴AA1∥DD1,AB∥CD…(1分)
∵DD1、CD⊆平面CDD1C1,AA1、AB?平面平面CDD1C1
∴AA1∥平面CDD1C1,AB∥平面CDD1C1,…(3分)
∵AA1、AB⊆平面AA1B1B,且AA1∩AB=A,
∴平面AA1B1B∥平面CDD1C1,…(4分)
∵AF∥EC1,∴A、E、C1、F四点共面.…(5分)
∵平面AEC1F∩平面AA1B1B=AE,平面AEC1F∩平面CDD1C1=FC1
∴AE∥FC1;…(7分)
(2)设连接AC、BD,交于O点.连接AC1、EF,交于点O1,连接O1O
∵四边形ABCD,四边形AEC1F都是平行四边形,
∴O为AC、BD的中点,O1为AC1、EF的中点.…(8分)
∵BE∥DF,∴O1O=C1C=(BE+EF).
∵BE=1,DF=2,∴CC1=3…(10分)
∵AA1⊥平面ABCD,四边形AEC1F是正方形,
∴△ACC1,△ABE,△ADF均为直角三角形,得
AC2=-=2AE2-=12-9=3,AB2=AE2-BE2=6-1=5
BC2=AD2=AD2-DF2=6-4=2
∴AC2+BC2=5=AB2,可得AC⊥BC.…(12分)
∵BB1⊥平面ABCD,AC⊆平面ABCD
∴AC⊥BB1
∵BC、BB1是平面BB1C1C内的相交直线
∴AC⊥平面BB1C1C …(13分)
∵EC1⊆平面BB1C1C
∴AC⊥EC1 …(14分)
分析:(1)根据四棱柱的底面ABCD是平行四边形,得四棱柱为平行六面体,可得平面AA1B1B∥平面CDD1C1,再根据面面平行的性质定理,可证出AE∥FC1
(2)设连接AC、BD,交于O点.连接AC1、EF,交于点O1,连接O1O.利用△ACC1与梯形BEFD有公共的中位线,得C1C=BD+EF=3.分别在Rt△ACC1、Rt△ABE和Rt△ADF中,用勾股定理加以计算,得AC2+BC2=5=AB2,可得AC⊥BC,结合AC⊥BB1,得AC⊥平面BB1C1C,从而证出AC⊥EC1
点评:本题主要考察空间点、线、面位置关系,考查线线、线面平行的性质和判定,线线垂直的性质和判定,考查空间想象能力、运算能力、把空间问题转化为平面问题的意识以及推理论证能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,四棱柱ABCD-A1B1C1D1中,A1D⊥平面ABCD,底面ABCD是边长为1的正方形,侧棱AA1=2.
(Ⅰ)求证:C1D∥平面ABB1A1
(Ⅱ)求直线BD1与平面A1C1D所成角的正弦值;
(Ⅲ)求二面角D-A1C1-A的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,四棱柱ABCD-A1B1C1D1的底面ABCD为正方形,侧棱与底面边长均为2a,且∠A1AD=∠A1AB=60°,则侧棱AA1和截面B1D1DB的距离是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,四棱柱ABCD-A1B1C1D1中,A1D⊥平面ABCD,底面ABCD是边长为1的正方形,侧棱A1A=2,
(Ⅰ)证明:AC⊥A1B;
(Ⅱ)若棱AA1上存在一点P,使得
AP
PA1
,当二面角A-B1C1-P的大小为300时,求实数λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•泉州模拟)如图,四棱柱ABCD-A1B1C1D1中,AA1⊥平面ABCD.
(Ⅰ)从下列①②③三个条件中选择一个做为AC⊥BD1的充分条件,并给予证明;
①AB⊥BC,②AC⊥BD;③ABCD是平行四边形.
(Ⅱ)设四棱柱ABCD-A1B1C1D1的所有棱长都为1,且∠BAD为锐角,求平面BDD1与平面BC1D1所成锐二面角θ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•天津)如图,四棱柱ABCD-A1B1C1D1中,侧棱A1A⊥底面ABCD,AB∥DC,AB⊥AD,AD=CD=1,
AA1=AB=2,E为棱AA1的中点.
(Ⅰ)证明B1C1⊥CE;
(Ⅱ)求二面角B1-CE-C1的正弦值.
(Ⅲ)设点M在线段C1E上,且直线AM与平面ADD1A1所成角的正弦值为
2
6
,求线段AM的长.

查看答案和解析>>

同步练习册答案