精英家教网 > 高中数学 > 题目详情

【题目】是函数 的两个极值点.

(1)若,求函数的解析式;

(2)若,求的最大值;

(3)设函数,当时,求证: .

【答案】(1) (2)(3)见解析

【解析】试题分析:(1)由函数极值点定义,知所给两数对应的导数值为,建立关于的方程组,解得取值,可得函数解析式;(2)函数极值点对应导数值取时的值,利用根与系数的关系与,可得,再构建关于的函数,利用函数单调性可得的最大值;(3)对所给函数化简可得,利用二次函数可证结果.

试题解析:(1)∵,∴

依题意有,∴.

解得,∴.

(2)∵,

依题意,是方程的两个根,且

, 即:4,

,∴3.

,则

2,由2.

即:函数在区间(0,2)上是增函数,在区间(2,3)上是减函数,

∴当时,有极大值为12,∴上的最大值是12,

的最大值为.

(3) 证明:∵是方程的两根,∴.

,∴

,即

. ∴

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某研究小组到社区了解参加健美操运动人员的情况,用分层抽样的方法抽取了40人进行调查,按照年龄分成五个小组: ,并绘制成如图所示的频率分布直方图.

(1)求该社区参加健美操运动人员的平均年龄;

(2)如果研究小组从该样本中年龄在6人中随机地抽取出2人进行深入采访,求被采访的2人,年龄恰好都在内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数y=ax , x∈[﹣1,2]的最大值与函数f(x)=x2﹣2x+3的最值相等,则a的值为(
A.
B. 或2
C. 或2
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是矩形,平面平面分别为棱的中点.求证:

(1)平面

(2)平面.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C1、抛物线C2的焦点均在x轴上,C1的中心和C2的顶点均为原点O,从每条曲线上取两个点,将其坐标记录于下表中:

x

3

﹣2

4

y

﹣2

0

﹣4


(1)求C1、C2的标准方程;
(2)请问是否存在直线l满足条件:①过C2的焦点F;②与C1交不同两点M、N且满足 ?若存在,求出直线l的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)图象的一部分如图所示,函数g(x)=f(x+ ),则下列结论正确的是(

A.函数g(x)的奇函数
B.函数f(x)与g(x)的图象均关于直线x=﹣ π对称
C.函数f(x)与g(x)的图象均关于点(﹣ ,0)对称
D.函数f(x)与g(x)在区间(﹣ ,0)上均单调递增

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国是世界上严重缺水的国家,某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准(吨),一位居民的月用水量不超过的部分按平价收费,超过的部分按议价收费.为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照 分成9组,制成了如图所示的频率分布直方图.

(Ⅰ)求直方图中的值;

(Ⅱ)若将频率视为概率,从该城市居民中随机抽取3人,记这3人中月均用水量不低于3吨的人数为,求的分布列与数学期望.

(Ⅲ)若该市政府希望使85%的居民每月的用水量不超过标准(吨),估计的值(精确到0.01),并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在锐角△ABC中,a、b、c分别为角A、B、C所对的边,且 =2csinA
(1)确定角C的大小;
(2)若c= ,且△ABC的面积为 ,求a+b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面,底面是直角梯形,,上的点.

(1)求证: 平面平面

(2)若的中点,且二面角的余弦值为,求直线与平面所成角的正弦值.

查看答案和解析>>

同步练习册答案