精英家教网 > 高中数学 > 题目详情

【题目】已知为坐标原点,抛物线上一点到焦点的距离为,若点为抛物线准线上的动点,给出以下命题:

①当为正三角形时,的值为

②存在点,使得

③若,则等于

的最小值为,则等于.

其中正确的是(

A.①③④B.②③C.①③D.②③④

【答案】A

【解析】

对于①可知,当为正三角形时与准线垂直,画出图形结合几何关系即可求得的值;对于②根据向量关系可知,结合点的位置即可判断;对于③,作出几何图形,根据线段比例关系即可求得的值;对于④,作关于准线的对称点,连接交准线于,可知即为的最小值,根据线段几何关系及最小值即可求得的值.

对于①,当为正三角形时,如下图所示,

抛物线的准线交轴于

,由抛物线定义可知,则与准线垂直,

所以

,所以,

,即,所以①正确;

对于②,假设存在点,使得,即

所以点为的中点,

由抛物线图像与性质可知,为抛物线上一点,为焦点,线段轴右侧,

在抛物线准线上,在轴左侧,因而不可能为的中点,所以②错误;

对于③,若,则,作垂直于准线并交于,准线交轴于,如下图所示:

由抛物线定义可知

根据相似三角形中对应线段成比例可知,即

解得,所以③正确;

对于④,作关于准线的对称点,连接交准线于,作垂直于准线并交于,作垂直于轴并交于,如下图所示:

根据对称性可知,此时即为的最小值,

由抛物线定义可知,所以的横坐标为

代入抛物线可知

的最小值为

,即

化简可得,即

解得,所以④正确;

综上所述,正确的为①③④.

故选:A.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知平面直角坐标系中,曲线的方程为,以原点为极点,轴的正半轴为极轴建立极坐标系,直线的极坐标方程为.若将曲线上的所有点的横坐标缩小到原来的一半,纵坐标伸长到原来的倍,得曲线

1)写出直线和曲线的直角坐标方程;

2)设点 直线与曲线的两个交点分别为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两位同学参加某个知识答题游戏节目,答题分两轮,第一轮为“选题答题环节”第二轮为“轮流坐庄答题环节”.首先进行第一轮“选题答题环节”,答题规则是:每位同学各自从备选的5道不同题中随机抽出3道题进行答题,答对一题加10分,答错一题(不答视为答错)减5分,已知甲能答对备选5道题中的每道题的概率都是,乙恰能答对备选5道题中的其中3道题;第一轮答题完毕后进行第二轮“轮流坐庄答题环节”,答题规则是:先确定一人坐庄答题,若答对,继续答下一题…,直到答错,则换人(换庄)答下一题…以此类推.例如若甲首先坐庄,则他答第1题,若答对继续答第2题,如果第2题也答对,继续答第3题,直到他答错则换成乙坐庄开始答下一题,…直到乙答错再换成甲坐庄答题,依次类推两人共计答完20道题游戏结束,假设由第一轮答题得分期望高的同学在第二轮环节中最先开始作答,且记第道题也由该同学(最先答题的同学)作答的概率为),其中,已知供甲乙回答的20道题中,甲,乙两人答对其中每道题的概率都是,如果某位同学有机会答第道题且回答正确则该同学加10分,答错(不答视为答错)则减5分,甲乙答题相互独立;两轮答题完毕总得分高者胜出.回答下列问题

1)请预测第二轮最先开始作答的是谁?并说明理由

2)①求第二轮答题中

②求证为等比数列,并求)的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校高中三个年级共有4000人,为了了解各年级学周末在家的学习情况,现通过分层抽样的方法获得相关数据如下(单位:小时),其中高一学生周末的平均学习时间记为.

高一:14 15 15.5 16.5 17 17 18 19

高二:15 16 16 16 17 17 18.5

高三:16 17 18 21.5 24

(1)求每个年级的学生人数;

(2)从高三被抽查的同学中随机抽取2人,求2人学习时间均超过的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若,求函数的极值;

(2)当时,,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现从某学校中选出名学生,统计了名学生一周的户外运动时间(分钟)总和,得到如图所示的频率分布直方图和统计表格.

1)写出的值,并估计该学校人均每周的户外运动时间(同一组数据用该组区间的中点值作代表);

2)假设,则户外运动时长为的学生中,男生人数比女生人数多的概率.

3)若,完成下列列联表,并回答能否有90%的把握认为“每周至少运动130分钟与性别有关”?

每周户外运动时间不少于130分钟

每周户外运动时间少于130分钟

合计

合计

附:,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】分别是椭圆的左,右焦点,两点分别是椭圆的上,下顶点,是等腰直角三角形,延长交椭圆点,且的周长为.

1)求椭圆的方程;

2)设点是椭圆上异于的动点,直线与直分别相交于两点,点,求证:的外接圆恒过原点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为实数,用表示不超过的最大整数,例如,对于函数,若存在,使得,则称函数是“函数”.

1)判断函数是否是“函数”;

2)设函数是定义在上的周期函数,其最小正周期是,若不是“函数”,求的最小值;

3)若函数是“函数”,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了比较两种治疗失眠症的药(分别称为药,药)的疗效,某机构随机地选取 位患者服用药,位患者服用药,观察这位患者的睡眠改善情况.这些患者服用一段时间后,根据患者的日平均增加睡眠时间(单位:),以整数部分当茎,小数部分当叶,绘制了如下茎叶图:

1)根据茎叶图判断哪种药对增加睡眠时间更有效?并说明理由;

2)求这名患者日平均增加睡眠时间的中位数,并将日平均增加睡眠时间超过和不超过的患者人数填入下面的列联表:

超过

不超过

服用

服用

3)根据(2)中的列联表,能否有的把握认为两种药的疗效有差异?

附: .

0.01

0.005

0.001

6.635

7.879

10.828

查看答案和解析>>

同步练习册答案