精英家教网 > 高中数学 > 题目详情
已知圆O1的方程为x2+(y+1)2=6,圆O2的圆心坐标为(2,1).若两圆相交于A,B两点,且|AB|=4,求圆O2的方程.
分析:设出圆O2的方程,两圆方程相交消去二次项得到公共弦AB所在直线方程,利用点到直线的距离公式求出圆心O1到直线AB的距离d,根据半径以及弦长,利用垂径定理,以及勾股定理求出r2的值,即可确定出圆O2的方程.
解答:解:设圆O2的方程为(x-2)2+(y-1)2=r2(r>0),
∵圆O1的方程为x2+(y+1)2=6,即圆O1的圆心坐标为(0,-1),
∴直线AB的方程为4x+4y+r2-10=0,
∴圆心O1到直线AB的距离d=
|-4+r2-10|
42+42
=
|r2-14|
4
2

由d2+22=6,得d2=2,
∴r2-14=±8,
解得:r2=6或22,
则圆O2的方程为(x-2)2+(y-1)2=6或(x-2)2+(y-1)2=22.
点评:此题考查了圆的标准方程,涉及的知识有:两圆相交的性质,点到直线的距离公式,垂径定理,勾股定理,熟练掌握公式及定理是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网A.选修4-1:几何证明选讲
如图,圆O1与圆O2内切于点A,其半径分别为r1与r2(r1>r2 ).圆O1的弦AB交圆O2于点C ( O1不在AB上).求证:AB:AC为定值.
B.选修4-2:矩阵与变换
已知矩阵A=
11
21
,向量β=
1
2
.求向量
α
,使得A2
α
=
β

C.选修4-4:坐标系与参数方程
在平面直角坐标系xOy中,求过椭圆
x=5cosφ
y=3sinφ
(φ为参数)的右焦点,且与直线
x=4-2t
y=3-t
(t为参数)平行的直线的普通方程.
D.选修4-5:不等式选讲(本小题满分10分)
解不等式:x+|2x-1|<3.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)选修4-4:坐标系与参数方程已知圆O1和圆O2的极坐标方程分别为ρ=2,ρ2-2
2
ρcos(θ-
π
4
)=2.
(Ⅰ)把圆O1和圆O2的极坐标方程化为直角坐标方程;
(Ⅱ)求经过两圆交点的直线的极坐标方程.
(2)选修4-5:不等式选讲,设x+2y+3z=3,求4x2+5y2+6z2的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆O1x2+y2+2y-3=0内一定点A(1,-2),P,Q为圆上的两不同动点.
(1)若P,Q两点关于过定点A的直线l对称,求直线l的方程;
(2)若圆O2的圆心O2与点A关于直线x+3y=0对称,圆O2与圆O1交于M,N两点,且|MN|=2
2
,求圆O2的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•徐州模拟)本题包括A、B、C、D四小题,请选定其中两题,并在答题卡指定区域内作答,
若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.
A.选修4-1:几何证明选讲
如图,半径分别为R,r(R>r>0)的两圆⊙O,⊙O1内切于点T,P是外圆⊙O上任意一点,连PT交⊙O1于点M,PN与内圆⊙O1相切,切点为N.求证:PN:PM为定值.
B.选修4-2:矩阵与变换
已知矩阵M=
21
34

(1)求矩阵M的逆矩阵;
(2)求矩阵M的特征值及特征向量;
C.选修4-2:矩阵与变换
在平面直角坐标系x0y中,求圆C的参数方程为
x=-1+rcosθ
y=rsinθ
为参数r>0),以O为极点,x轴正半轴为极轴建立极坐标系,直线l的极坐标方程为ρcos(θ+
π
4
)=2
2
.若直线l与圆C相切,求r的值.
D.选修4-5:不等式选讲
已知实数a,b,c满足a>b>c,且a+b+c=1,a2+b2+c2=1,求证:1<a+b<
4
3

查看答案和解析>>

科目:高中数学 来源:安徽省旌中绩中2011-2012学年高二上学期12月联考数学理科试题 题型:044

已知圆O1方程为(x-3)2+y2=1,圆O2方程为(x+3)2+y2=81,动圆P与圆O1外切,与圆O2内切,求动圆P圆心P的轨迹方程

查看答案和解析>>

同步练习册答案