精英家教网 > 高中数学 > 题目详情

已知数列{an}共有6项,若其中三项是1,两项是2,一项是3,则满足上述条件的数列共有________个.

60
分析:本题是一个分步计数问题,先排3,在6个位置上排列有6种情况;再排是2的两项,相当于在5个位置中选择两个位置,共有C52种;最后排是1的三项,不管三个1怎么放置,结果只有1种情况.最后相乘得到结果.
解答:由题意知本题是一个分步计数问题,
先排3,在6个位置上排列有6种情况;
再排是2的两项,相当于在5个位置中选择两个位置,共有C52=10种;
最后排是1的三项,不管三个1怎么放置,结果只有1种情况.
根据分步计数原理知共6×10=60种.
故答案为:60
点评:本题考查计数原理的应用,本题解题的关键是理解所给的相同的元素怎么排列,才可以做到不重不漏,本题是一个中档题目.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}共有m项,定义{an}的所有项和为S(1),第二项及以后所有项和为S(2),第三项及以后所有项和为S(3),…,第n项及以后所有项和为S(n),若S(n)是首项为2,公比为
12
的等比数列的前n项和,则当n<m,an等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}共有m项,定义{an}的所有项和为S(1),第二项及以后所有项和为S(2),第三项及以后所有项和为S(3),…,第n项及以后所有项和为S(n).若S(n)是首项为2,公比为
1
2
的等比数列的前n项和,则当n<m时,an等于(  )
A、-
1
2n-2
B、
1
2n-2
C、-
1
2n-1
D、
1
2n-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}共有m项,记{an}的所有项和为s(1),第二项及以后所有项和为s(2),第三项及以后所有项和为s(3),…,第n项及以后所有项和为s(n),若s(n)是首项为1,公差为2的等差数列的前n项和,则当n<m时,an=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•卢湾区一模)已知数列{an}共有6项,若其中三项是1,两项是2,一项是3,则满足上述条件的数列共有
60
60
个.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年福建省泉州一中高二(上)期中数学试卷(理科)(解析版) 题型:填空题

已知数列{an}共有m项,定义{an}的所有项和为S(1),第二项及以后所有项和为S(2),第三项及以后所有项和为S(3),…,第n项及以后所有项和为S(n),若S(n)是首项为2,公比为的等比数列的前n项和,则当n<m,an等于   

查看答案和解析>>

同步练习册答案