【题目】已知函数(其中为自然对数的底数).
(1)证明:当时,;
(2)当时,恒成立,求实数的取值范围.
【答案】(1)证明见解析;(2).
【解析】
(1)构造函数,对其进行求导,再对导函数进行求导,进而判断出函数在上单调递增,结合,从而证得,即原不等式成立;
(2)先由特殊值求得,再用反证法证明该范围能使时不等式恒成立.由(1)的结论,当时将恒成立的不等式转化为.由得,则可构造函数,证明.利用导函数,以及重要不等关系“”分别证明时和时,,则不等式得证,从而求得.
解:(1)令
,
所以,
令,
,
则成立,在单调递增,
,即成立,
所以在单调递增,得,
即当时,,得证;
(2)因为当时,恒成立,
令得,所以,
下证当时原不等式成立
由(1)知当时,
只需证明,
因为当时,,
故只需证明,
令,
所以,
①当时,
成立,在单调递增,
成立,
②当时,
由不等式知,
所以成立,
综上原不等式得证,故实数的取值范围为:.
科目:高中数学 来源: 题型:
【题目】新型冠状病毒肺炎正在全球蔓延,对世界经济影响严重,中国疫情防控,复工复学恢复经济成为各国的榜样,绵阳某商场在五一劳动节期间举行促销活动,根据市场调查,该商场决定从3种服装商品、2种家电、4种日用商品中,选出3种商品进行促销活动.
(1)试求选出的3种商品至少有2种服装商品的概率;
(2)商场对选的A商品采用的促销方案是有奖销售,即在该商品现价的基础上将价格提高300元,同时允许顾客有3次抽奖的机会,若中奖,则每次中奖都可获得一定数额的奖金,假设顾客每次抽奖时获奖与否是等概率的,请问:商场应将中奖奖金数额最高定为多少元,才能使促销方案对自己有利?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,以为极点,轴正半轴为极轴建立极坐标系.已知曲线的参数方程为(为参数,),曲线的极坐标方程为,点是与的一个交点,其极坐标为.设射线与曲线相交于,两点,与曲线相交于,两点.
(1)求,的值;
(2)求的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某省年开始将全面实施新高考方案.在门选择性考试科目中,物理、历史这两门科目采用原始分计分;思想政治、地理、化学、生物这4门科目采用等级转换赋分,将每科考生的原始分从高到低划分为,,,,共个等级,各等级人数所占比例分别为、、、和,并按给定的公式进行转换赋分.该省组织了一次高一年级统一考试,并对思想政治、地理、化学、生物这4门科目的原始分进行了等级转换赋分.
(1)某校生物学科获得等级的共有10名学生,其原始分及转换分如下表:
原始分 | 91 | 90 | 89 | 88 | 87 | 85 | 83 | 82 |
转换分 | 100 | 99 | 97 | 95 | 94 | 91 | 88 | 86 |
人数 | 1 | 1 | 2 | 1 | 2 | 1 | 1 | 1 |
现从这10名学生中随机抽取3人,设这3人中生物转换分不低于分的人数为,求的分布列和数学期望;
(2)假设该省此次高一学生生物学科原始分服从正态分布.若,令,则,请解决下列问题:
①若以此次高一学生生物学科原始分等级的最低分为实施分层教学的划线分,试估计该划线分大约为多少分?(结果保留为整数)
②现随机抽取了该省名高一学生的此次生物学科的原始分,若这些学生的原始分相互独立,记为被抽到的原始分不低于分的学生人数,求取得最大值时的值.
附:若,则,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知真命题:“函数的图象关于点成中心对称图形”的充要条件为“函数是奇函数”.
(Ⅰ)将函数的图象向左平移1个单位,再向上平移2个单位,求此时图象对应的函数解析式,并利用题设中的真命题求函数图象对称中心的坐标;
(Ⅱ)求函数图象对称中心的坐标;
(Ⅲ)已知命题:“函数的图象关于某直线成轴对称图象”的充要条件为“存在实数和,使得函数是偶函数”.判断该命题的真假.如果是真命题,请给予证明;如果是假命题,请说明理由,并类比题设的真命题对它进行修改,使之成为真命题(不必证明).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某工厂生产某种电子产品,每件产品合格的概率均为,现工厂为提高产品声誉,要求在交付用户前每件产品都通过合格检验,已知该工厂的检验仪器一次最多可检验件该产品,且每件产品检验合格与否相互独立.若每件产品均检验一次,所需检验费用较多,该工厂提出以下检验方案:将产品每个()一组进行分组检验,如果某一组产品检验合格,则说明该组内产品均合格,若检验不合格,则说明该组内有不合格产品,再对该组内每一件产品单独进行检验,如此,每一组产品只需检验一次或次.设该工厂生产件该产品,记每件产品的平均检验次数为.
(1)的分布列及其期望;
(2)(i)试说明,当越大时,该方案越合理,即所需平均检验次数越少;
(ii)当时,求使该方案最合理时的值及件该产品的平均检验次数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2019年泉州市农村电商发展迅猛,成为创新农产品交易方式、增加农民收入、引导农业供给侧结构性改革、促进乡村振兴的重要力量,成为乡村振兴的新引擎.2019年大学毕业的李想,选择回到家乡泉州自主创业,他在网上开了一家水果网店.2019年双十一期间,为了增加水果销量,李想设计了下面两种促销方案:方案一:购买金额每满120元,即可抽奖一次,中奖可获得20元,每次中奖的概率为(),假设每次抽奖相互独立.方案二:购买金额不低于180元时,即可优惠元,并在优惠后的基础上打九折.
(1)在促销方案一中,设每10个抽奖人次中恰有6人次中奖的概率为,求的最大值点;
(2)若促销方案二中,李想每笔订单得到的金额均不低于促销前总价的八折,求的最大值;
(3)以(1)中确定的作为的值,且当取最大值时,若某位顾客一次性购买了360元,则该顾客应选择哪种促销方案?请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设点为平面直角坐标系中的一个动点(其中为坐标系原点),点到定点的距离比到直线的距离大1,动点的轨迹方程为.
(1)求曲线的方程;
(2)若过点的直线与曲线相交于、两点.
①若,求直线的直线方程;
②分别过点,作曲线的切线且交于点,是否存在以为圆心,以为半径的圆与经过点且垂直于直线的直线相交于、两点,求的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com