精英家教网 > 高中数学 > 题目详情

【题目】为检查某工厂所生产的8万台电风扇的质量,抽查了其中20台的无故障连续使用时限(单位:小时) 如下:

248 256 232 243 188 268 278 266 289 312

274 296 288 302 295 228 287 217 329 283

分组

频数

频率

频率/组距

总计

0.05

1)完成频率分布表,并作出频率分布直方图;

2)估计8万台电风扇中有多少台无故障连续使用时限不低于280小时;

3)用组中值(同一组中的数据在该组区间的中点值)估计样本的平均无故障连续使用时限.

【答案】1)见解析 23.6万台 3269小时

【解析】

1)根据题目所给数据求得频数、频率以及频率/组距,填写好表格并画出频率分布直方图.

2)计算出无故障连续使用时限不低于280小时的频率,再乘以万,求得估计8万台电扇中有3.6万台无故障连续使用时限不低于280小时.

3)利用每组中点值成立对应的频率,然后相加,求得样本的平均无故障连续使用时限的估计值.

1)频率分布表及频率分布直方图如下所示:

分组

频数

频率

频率/组距

1

0.05

0.0025

1

0.05

0.0025

2

0.10

0.0050

3

0.15

0.0075

4

0.20

0.0100

6

0.30

0.0150

2

0.10

0.0050

1

0.05

0.0025

总计

20

1.00

0.05

2(万).

答:估计8万台电扇中有3.6万台无故障连续使用时限不低于280小时.

3(小时).

答:样本的平均无故障连续使用时限为269小时.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月AB两种移动支付方式的使用情况,从全校学生中随机抽取了100人,发现样本中AB两种支付方式都不使用的有5人,样本中仅使用A和仅使用B的学生的支付金额分布情况如下:

交付金额(元)

支付方式

0,1000]

1000,2000]

大于2000

仅使用A

18

9

3

仅使用B

10

14

1

(Ⅰ)从全校学生中随机抽取1人,估计该学生上个月AB两种支付方式都使用的概率;

(Ⅱ)从样本仅使用A和仅使用B的学生中各随机抽取1人,以X表示这2人中上个月支付金额大于1000元的人数,求X的分布列和数学期望;

(Ⅲ)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用A的学生中,随机抽查3人,发现他们本月的支付金额都大于2000元.根据抽查结果,能否认为样本仅使用A的学生中本月支付金额大于2000元的人数有变化?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知表示不小于x的最小整数,例如.

1)设,若,求实数m的取值范围;

2)设在区间)上的值域为,求集合中元素的个数;

3)设),,若对于,都有,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)讨论的单调性;

2)若,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy内,动点P到定点F(﹣10)的距离与P到定直线x=4的距离之比为.

1)求动点P的轨迹C的方程;

2)若轨迹C上的动点N到定点Mm0)(0m2)的距离的最小值为1,求m的值.

3)设点AB是轨迹C上两个动点,直线OAOB与轨迹C的另一交点分别为A1B1,且直线OAOB的斜率之积等于,问四边形ABA1B1的面积S是否为定值?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,有一个长方体形状的敞口玻璃容器,底面是边长为20cm的正方形,高为30cm,内有20cm深的溶液.现将此容器倾斜一定角度(图),且倾斜时底面的一条棱始终在桌面上(图均为容器的纵截面).

1)要使倾斜后容器内的溶液不会溢出,角的最大值是多少?

2)现需要倒出不少于的溶液,当时,能实现要求吗?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知平面直角坐标系,以为极点,轴的非负半轴为极轴建立极坐标系,曲线的参数方程为为参数),点时曲线上两点,点的极坐标分别为,.

1)写出曲线的普通方程和极坐标方程;

2)求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的首项,对任意的,都有,数列是公比不为的等比数列.

1)求实数的值;

2)设数列的前项和为,求所有正整数的值,使得恰好为数列中的项.

查看答案和解析>>

同步练习册答案