精英家教网 > 高中数学 > 题目详情
2.命题:“?x>0,x2+x≥0”的否定形式是(  )
A.?x≤0,x2+x>0B.?x>0,x2+x≤0C.?x0>0,x02+x0<0D.?x0≤0,x02+x0>0

分析 根据全称命题的否定是特称命题进行求解.

解答 解:全称命题的否定是特称命题,
则命题的否定是:?x0∈R,x02+x0<0,
故选:C

点评 本题主要考查含有量词的命题的否定,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.已知i为虚数单位,则其连续2017个正整数次幂之和i+i2+i3+…+i2017=i.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数f(2x)=x•log32,则f(39)的值为(  )
A.$\frac{1}{6}$B.$\frac{1}{9}$C.6D.9

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.方程|x|-1=$\sqrt{1-(y-1)^{2}}$所表示的图形是(  )
A..一个半圆B.一个圆C.两个半圆D.两个圆

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.某单位要在800名员工中抽去80名员工调查职工身体健康状况,其中青年员工400名,中年员工300名,老年员工100名,下列说法错误的是(  )
A.老年人应作为重点调查对象,故抽取的老年人应超过40名
B.每个人被抽到的概率相同为$\frac{1}{10}$
C.应使用分层抽样抽取样本调查
D.抽出的样本能在一定程度上反映总体的健康状况

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若过点P(1,$\sqrt{3}$)的直线l与圆x2+y2=1有公共点,则直线l的倾斜角的取值范围是(  )
A.[$\frac{π}{2}$,$\frac{2π}{3}$]B.[$\frac{π}{6}$,$\frac{π}{3}$]C.[$\frac{π}{3}$,$\frac{π}{2}$]D.[$\frac{π}{6}$,$\frac{π}{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.袋中有大小、形状完全相同的红球、黄球、绿球共12个,从中任取一球,得到红球或绿球的概率是$\frac{2}{3}$,得到红球或黄球的概率是$\frac{5}{12}$.
(Ⅰ)从中任取一球,求分别得到红球、黄球、绿球的概率;
(Ⅱ)从中任取一球,求得到不是“红球”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设x1,x2∈(0,$\frac{π}{2}$),且x1≠x2,下列不等式中成立的是(  )
①$\frac{1}{2}(sin{x}_{1}+sin{x}_{2})$>sin$\frac{{x}_{1}+{x}_{2}}{2}$;
②$\frac{1}{2}$(cosx1+cosx2)>cos$\frac{{x}_{1}+{x}_{2}}{2}$;
③$\frac{1}{2}$(tanx1+tanx2)>tan$\frac{{x}_{1}+{x}_{2}}{2}$;
④$\frac{1}{2}$($\frac{1}{tan{x}_{1}}$+$\frac{1}{tan{x}_{2}}$)>$\frac{1}{tan\frac{{x}_{1}+{x}_{2}}{2}}$.
A.①②B.③④C.①④D.②③

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在△ABC的三边分别为a,b,c,a2=b2+c2-bc,则A等于(  )
A.30°B.60°C.75°D.120°

查看答案和解析>>

同步练习册答案