精英家教网 > 高中数学 > 题目详情

【题目】“莞马”活动中的α机器人一度成为新闻热点,为检测其质量,从一生产流水线上抽取20件该产品,其中合格产品有15件,不合格的产品有5件.
(1)现从这20件产品中任意抽取2件,记不合格的产品数为X,求X的分布列及数学期望;
(2)用频率估计概率,现从流水线中任意抽取三个机器人,记ξ为合格机器人与不合格机器人的件数差的绝对值,求ξ的分布列及数学期望.

【答案】
(1)解:随机变量X的可能取值为0,1,2;

P(X=0)= =

P(X=1)= =

P(X=2)= =

所以随机变量X的分布列为:

X

0

1

2

P

∴E(X)=0× +1× +2× =


(2)解:合格机器人的件数可能是0,1,2,3,相应的不合格机器人的件数为3,2,1,0.

所以ξ的可能取值为1,3;

由题意知:

P(ξ=3)= + =

所以随机变量ξ的分布列为:

ξ

1

3

P


【解析】(1)随机变量X的可能取值为0,1,2,求出相应的概率,可求X的分布列及数学期望;(2)合格机器人的件数可能是0,1,2,3,相应的不合格机器人的件数为3,2,1,0.所以ξ的可能取值为1,3,求出相应的概率,可求ξ的分布列及数学期望.
【考点精析】本题主要考查了离散型随机变量及其分布列的相关知识点,需要掌握在射击、产品检验等例子中,对于随机变量X可能取的值,我们可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.离散型随机变量的分布列:一般的,设离散型随机变量X可能取的值为x1,x2,.....,xi,......,xn,X取每一个值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,则称表为离散型随机变量X 的概率分布,简称分布列才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知为实数,函数.

(1)若是函数的一个极值点,求实数的取值;

(2)设,若,使得成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若偶函数f(x)在(﹣∞,﹣1]上是增函数,则下列关系式中成立的是(
A.f(﹣ )<f(﹣1)<f(2)
B.f(﹣1)<f(﹣ )<f(2)
C.f(2)<f(﹣1)<f(﹣
D.f(2)<f(﹣ )<f(﹣1)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)=a|x﹣b|+c满足①函数f(x)的图象关于x=1对称;②在R上有大于零的最大值;③函数f(x)的图象过点(0,1);④a,b,c∈Z,试写出一组符合要求的a,b,c的值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)的定义域为(﹣∞,a)∪(a,+∞),f(x)≥0的解集为M,f(x)<0的解集为N,则下列结论正确的是(  )
A.M=CRN
B.CRM∩CRN=
C.M∪N=R
D.CRM∪CRN=R

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数y=x2﹣3x﹣4的定义域为[0,m],值域为 ,则m的取值范围是(  )
A.(0,4]
B.

C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,则函数f(x)的值域是;若f[f(x0)]=2,则x0=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量,求:

(1);(2) 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知A(x1 , f(x1),B(x2 , f(x2))是函数f(x)=2sin(ωx+φ)(ω>0,﹣ <φ<0)图象上的任意两点,且初相φ的终边经过点P(1,﹣ ),若|f(x1)﹣f(x2)|=4时,|x1﹣x2|的最小值为 . (Ⅰ)求函数f(x)的解析式;
(Ⅱ)当x∈[0, ]时,求函数f(x)的单调递增区间;
(Ⅲ)当x∈[0, ]时,不等式mf(x)+2m≥f(x)恒成立,求实数m的取值范围.

查看答案和解析>>

同步练习册答案