精英家教网 > 高中数学 > 题目详情
已知A,B是抛物线x2=4y上两个动点,且直线AO与直线BO的倾斜角之和为
π4
,试证明直线AB过定点.
分析:设直线AB的方程为y=kx+m,代入x2=4y,利用韦达定理表示出A,B坐标的关系,结合直线AO与直线BO的倾斜角之和为
π
4

建立k,m关系,研究是否过定点.
解答:解:显然,直线AB与x轴不垂直,设直线AB的方程为y=kx+m,
代入x2=4y,得:x2-4kx-4m=0.
设A(x1,y1),B(x2,y2),则:
x1+x2=4k
x1x2=-4m

设直线AO与直线BO的倾斜角分别为α,β,则α+β=
π
4

tanα=
y1
x1
=
x1
4
,tanβ=
y2
x2
=
x2
4

所以,1=tan(α+β)=
tanα+tanβ
1-tanαtanβ
=
4(x1+x2)
16-x1x2
=
16k
16+4m
=
4k
4+m

即m=4k-4,
直线AB的方程为y=kx+4k-4,即y+4=k(x+4),
所以,直线AB恒过定点(-4,-4).
点评:本题要求学生能够掌握用代数方法解决几何问题的一般方法:研究直线AB过定点的问题就要通过直线AB的方程y=kx+m讨论问题,也就是要找到k与m的关系.为此,直线AB与抛物线交于不同的两个点及对于条件“直线AO与直线BO的倾斜角之和为
π
4
”进行必要的有效的代数化就成为解决本题的主要任务.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知A、B是抛物线y2=4x上的两点,O是抛物线的顶点,OA⊥OB.
(I)求证:直线AB过定点M(4,0);
(II)设弦AB的中点为P,求点P到直线x-y=0的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A,B是抛物线y2=2px(p>0)上两点,O为坐标原点,若|OA|=|OB|,且△AOB的垂心恰好是此抛物线的焦点,则直线AB的方程是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A,B是抛物线x2=2py(p>0)上的两点,F为抛物线的焦点,l为抛物线的准线.
(1)若过A点的抛物线的切线与y轴相交于C点,求证:|AF|=|CF|;
(2)若
OA
OB
+p2=0
(A、B异于原点),直线OB与过A且垂直于X轴的直线m相交于P点,求P点轨迹方程;
(3)若直线AB过抛物线的焦点,分别过A、B点的抛物线的切线相交于点T,求证:
AT
BT
=0
,并且点T在l上.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•青浦区二模)(理)已知A、B是抛物线y2=4x上的相异两点.
(1)设过点A且斜率为-1的直线l1,与过点B且斜率为1的直线l2相交于点P(4,4),求直线AB的斜率;
(2)问题(1)的条件中出现了这样的几个要素:已知圆锥曲线Γ,过该圆锥曲线上的相异两点A、B所作的两条直线l1、l2相交于圆锥曲线Γ上一点;结论是关于直线AB的斜率的值.请你对问题(1)作适当推广,并给予解答;
(3)若线段AB(不平行于y轴)的垂直平分线与x轴相交于点Q(x0,0).若x0=5,试用线段AB中点的纵坐标表示线段AB的长度,并求出中点的纵坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•青浦区二模)(文)已知A、B是抛物线y2=4x上的相异两点.
(1)设过点A且斜率为-1的直线l1,与过点B且斜率为1的直线l2相交于点P(4,4),求直线AB的斜率;
(2)问题(1)的条件中出现了这样的几个要素:已知圆锥曲线Γ,过该圆锥曲线上的相异两点A、B所作的两条直线l1、l2相交于圆锥曲线Γ上一点;结论是关于直线AB的斜率的值.请你对问题(1)作适当推广,并给予解答;
(3)若线段AB(不平行于y轴)的垂直平分线与x轴相交于点Q(x0,0).若x0>2,试用x0表示线段AB中点的横坐标.

查看答案和解析>>

同步练习册答案