精英家教网 > 高中数学 > 题目详情

【题目】已知函数

(1)判断函数上的单调性

(2)若恒成立,求整数的最大值

(3)求证:

【答案】1)函数上为减函数 (2)整数的最大值为3 (3)见解析

【解析】

(1)由导数的应用,结合,得函数上为减函数;

(2)原命题可转化为即恒成立,即,再构造函数,利用导数求其最小值即可;

(3)由(2)知,,令,再求和即可证明不等式,得解.

解:(1)因为

所以

又因为 ,所以

所以

即函数上为减函数;

(2)由恒成立,

恒成立,

所以

为增函数,

即存在唯一的实数根,满足,且

时,,当时,

即函数为减函数,在为增函数,

故整数的最大值为3;

(3)由(2)知,

=

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图(1)是某水上乐园拟开发水滑梯项目的效果图,考虑到空间和安全方面的原因,初步设计方案如下:如图(2),自直立于水面的空中平台的上端点P处分别向水池内的三个不同方向建水滑道,水滑道的下端点在同一条直线上,平分,假设水滑梯的滑道可以看成线段,均在过C且与垂直的平面内,为了滑梯的安全性,设计要求.

(1)求滑梯的高的最大值;

(2)现在开发商考虑把该水滑梯项目设计成室内游玩项目,且为保证该项目的趣味性,设计,求该滑梯装置(即图(2)中的几何体)的体积最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图.

Ⅰ)由折线图看出,可用线性回归模型拟合yt的关系,请用相关系数加以说明;

Ⅱ)建立y关于t的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量.

附注:

参考数据:

≈2.646.

参考公式:相关系数

回归方程中斜率和截距的最小二乘估计公式分别为:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设定义在R上的函数,当时,取极大值,且函数的图象关于原点对称.

1)求的表达式;

2)试在函数的图象上求两点,使以这两点为切点的切线互相垂直,且切点的横坐标都在上;

3)设,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的单调减区间为.

1)求的值及极值;

2)若对,不等式恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,则的零点个数为( )

A. 6B. 7C. 8D. 9

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】5名同学从左至右排成一排,则相邻且之间恰好有1名同学的排法有________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商场举行有奖促销活动,顾客购买一定金额商品后即可抽奖,每次抽奖都从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出1个球,在摸出的2个球中,若都是红球,则获一等奖;若只有1个红球,则获二等奖;若没有红球,则不获奖.

(1)求顾客抽奖1次能获奖的概率;

(2)若某顾客有3次抽奖机会,记该顾客在3次抽奖中获一等奖的次数为,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平而直角坐标系中,曲线的参数方程为为参数),以坐标原点为极点,轴正半轴为极轴的极坐标系中,曲线的极坐标方程为 ,曲线的极坐标方程为

1)求曲线的直角坐标方程;

2)已知点是曲线上一点、分别是上的点,求的最大值.

查看答案和解析>>

同步练习册答案