【题目】已知函数
(1)判断函数在上的单调性
(2)若恒成立,求整数的最大值
(3)求证:
科目:高中数学 来源: 题型:
【题目】如图(1)是某水上乐园拟开发水滑梯项目的效果图,考虑到空间和安全方面的原因,初步设计方案如下:如图(2),自直立于水面的空中平台的上端点P处分别向水池内的三个不同方向建水滑道,,,水滑道的下端点在同一条直线上,,平分,假设水滑梯的滑道可以看成线段,均在过C且与垂直的平面内,为了滑梯的安全性,设计要求.
(1)求滑梯的高的最大值;
(2)现在开发商考虑把该水滑梯项目设计成室内游玩项目,且为保证该项目的趣味性,设计,求该滑梯装置(即图(2)中的几何体)的体积最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图.
(Ⅰ)由折线图看出,可用线性回归模型拟合y与t的关系,请用相关系数加以说明;
(Ⅱ)建立y关于t的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量.
附注:
参考数据:,,
,≈2.646.
参考公式:相关系数
回归方程中斜率和截距的最小二乘估计公式分别为:
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设定义在R上的函数,当时,取极大值,且函数的图象关于原点对称.
(1)求的表达式;
(2)试在函数的图象上求两点,使以这两点为切点的切线互相垂直,且切点的横坐标都在上;
(3)设,,求证:.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某商场举行有奖促销活动,顾客购买一定金额商品后即可抽奖,每次抽奖都从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出1个球,在摸出的2个球中,若都是红球,则获一等奖;若只有1个红球,则获二等奖;若没有红球,则不获奖.
(1)求顾客抽奖1次能获奖的概率;
(2)若某顾客有3次抽奖机会,记该顾客在3次抽奖中获一等奖的次数为,求的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平而直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,轴正半轴为极轴的极坐标系中,曲线的极坐标方程为 ,曲线的极坐标方程为
(1)求曲线和的直角坐标方程;
(2)已知点是曲线上一点、分别是和上的点,求的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com