精英家教网 > 高中数学 > 题目详情
已知各项均不相等的等差数列{an}的前三项和S3=9,且a5是a3和a8的等比中项.
(1)求数列{an}的通项公式;
(2)设Tn为数列{
1
anan+1
}
的前n项和,若Tn≤λan+1对任意的n∈N*恒成立,求证:λ≥
1
16
分析:(1)利用S3=9,且a5是a3和a8的等比中项,建立方程组,即可求数列{an}的通项公式;
(2)利用裂项法求和,可得Tn≤λan+1对任意的n∈N*恒成立,等价于
n
2(n+2)
≤λ(n+2)
对任意的n∈N*恒成立,利用基本不等式,即可得到结论.
解答:(1)解:设数列{an}的公差为d,则
∵S3=9,且a5是a3和a8的等比中项,
3a1+3d=9
(a1+4d)2=(a1+2d)(a1+7d)

∵d≠0,∴d=1
∴a1=2
∴an=n+1;
(2)证明:∵
1
anan+1
=
1
(n+1)(n+2)
=
1
n+1
-
1
n+2

∴Tn=
1
2
-
1
3
+
1
3
-
1
4
+…+
1
n+1
-
1
n+2
=
1
2
-
1
n+2
=
n
2(n+2)

∵Tn≤λan+1对任意的n∈N*恒成立,
n
2(n+2)
≤λ(n+2)
对任意的n∈N*恒成立,
n
2(n+2)2
=
1
2(n+
4
n
+4)
1
2×(4+4)
=
1
16

λ≥
1
16
点评:本题考查数列的通项与求和,考查恒成立问题,考查基本不等式的运用,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•日照一模)已知各项均不相等的等差数列{an}的前四项和S4=14,a3是a1,a7的等比中项.
(I)求数列{an}的通项公式;
(II)设Tn为数列{
1
anan+1
}
的前n项和,若Tn
1
λ
an+1
对一切n∈N*恒成立,求实数λ的最大值.

查看答案和解析>>

科目:高中数学 来源:2012届浙江省桐乡市高级中学高三10月月考理科数学 题型:解答题

(本题满分15分)已知各项均不相等的等差数列的前四项和,且成等比.
(Ⅰ)求数列的通项公式;
(Ⅱ)设为数列的前n项和,若对一切恒成立,求实数的最小值.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年浙江省桐乡市高三10月月考理科数学 题型:解答题

(本题满分15分)已知各项均不相等的等差数列的前四项和,且成等比.

(Ⅰ)求数列的通项公式;

(Ⅱ)设为数列的前n项和,若对一切恒成立,求实数的最小值.

 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知各项均不相等的等差数列{an}的前三项和S3=9,且a5是a3和a8的等比中项.
(1)求数列{an}的通项公式;
(2)设Tn为数列{
1
anan+1
}
的前n项和,若Tn≤λan+1对任意的n∈N*恒成立,求证:λ≥
1
16

查看答案和解析>>

同步练习册答案