精英家教网 > 高中数学 > 题目详情

【题目】已知圆M:x2+y2+2y﹣7=0和点N(0,1),动圆P经过点N且与圆M相切,圆心P的轨迹为曲线E.
(1)求曲线E的方程;
(2)点A是曲线E与x轴正半轴的交点,点B、C在曲线E上,若直线AB、AC的斜率k1 , k2 , 满足k1k2=4,求△ABC面积的最大值.

【答案】
(1)解:圆M:x2+y2+2y﹣7=0的圆心为M(0,﹣1),半径为

点N(0,1)在圆M内,因为动圆P经过点N且与圆M相切,

所以动圆P与圆M内切.设动圆P半径为r,则 ﹣r=|PM|.

因为动圆P经过点N,所以r=|PN|, >|MN|,

所以曲线E是M,N为焦点,长轴长为 的椭圆.

,得b2=2﹣1=1,

所以曲线E的方程为


(2)解:直线BC斜率为0时,不合题意

设B(x1,y1),C(x2,y2),直线BC:x=ty+m,

联立方程组 得 (1+2t2)y2+4mty+2m2﹣2=0,

又k1k2=4,知y1y2=4(x1﹣1)(x2﹣1)=4(ty1+m﹣1)(ty2+m﹣1)

=

代入得

又m≠1,化简得(m+1)(1﹣4t2)=2(﹣4mt2)+2(m﹣1)(1+2t2),

解得m=3,故直线BC过定点(3,0)

由△>0,解得t2>4, =

(当且仅当 时取等号).

综上,△ABC面积的最大值为


【解析】(1)利用圆与圆的位置关系,得出曲线E是M,N为焦点,长轴长为 的椭圆,即可求曲线E的方程;(2)联立方程组 得 (1+2t2)y2+4mty+2m2﹣2=0,利用韦达定理,结合k1k2=4,得出直线BC过定点(3,0),表示出面积,即可求△ABC面积的最大值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,已知平面ADC∥平面A1B1C1 , B为线段AD的中点,△ABC≈△A1B1C1 , 四边形ABB1A1为正方形,平面AA1C1C丄平面ADB1A1 , A1C1=A1A,∠C1A1A= ,M为棱A1C1的中点.
(I)若N为线段DC1上的点,且直线MN∥平面ADB1A1 , 试确定点N的位置;
(Ⅱ)求平面MAD与平面CC1D所成的锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=|xex|,又g(x)=f2(x)﹣tf(x)(t∈R),若满足g(x)=﹣1的x有四个,则t的取值范围是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着人口老龄化的到来,我国的劳动力人口在不断减少,”延迟退休“已经成为人们越来越关注的话题,为了解公众对“延迟退休”的态度,某校课外研究性学习小组在某社区随机抽取了50人进行调查,将调查情况进行整理后制成下表:

年龄

[20,25)

[25,30)

[30,35)

[35,40)

[40,45)

人数

4

5

8

5

3

年龄

[45,50)

[50,55)

[55,60)

[60,65)

[65,70)

人数

6

7

3

5

4

经调查年龄在[25,30),[55,60)的被调查者中赞成人数分别是3人和2人,现从这两组的被调查者中各随机选取2人,进行跟踪调查.
(Ⅰ)求年龄在[25,30)的被调查者中选取的2人都赞成“延迟退休”的概率;
(Ⅱ)若选中的4人中,不赞成“延迟退休”的人数为X,求随机变量X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)的实义域为R,其图象关于点(﹣1,0)中心对称,其导函数为f′(x),当x<﹣1时,(x+1)[f(x)+(x+1)f′(x)]<0.则不等式xf(x﹣1)>f(0)的解集为( )
A.(1,+∞)
B.(﹣∞,﹣1)
C.(﹣1,1)
D.(﹣∞,﹣1)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】庄子说:“一尺之锤,日取其半,万世不竭”,这句话描述的是一个数列问题,现用程序框图描述,如图所示,若输入某个正整数n后,输出的S∈( ),则输入的n的值为( )

A.7
B.6
C.5
D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆E的一个顶点为A(0,﹣1),焦点在x轴上,若椭圆右焦点到直线x﹣y+2 =0的距离为3 (Ⅰ)求椭圆E的方程;
(Ⅱ)设直线l:y=kx+m(k≠0)与该椭圆交于不同的两点B,C,若坐标原点O到直线l的距离为 ,求△BOC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设P为双曲线 =1右支上的任意一点,O为坐标原点,过点P作双曲线两渐近线的平行线,分别与两渐近线交于A,B两点,则平行四边形PAOB的面积为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列 的前 项和为 ,且满足
(1)求数列 的通项公式
(2)设 ,令 ,求

查看答案和解析>>

同步练习册答案