精英家教网 > 高中数学 > 题目详情
9.函数y=$\sqrt{cosx}$的定义域为[2kπ-$\frac{π}{2}$,2kπ+$\frac{π}{2}$],k∈Z.

分析 根据函数y=$\sqrt{cosx}$,可得cosx≥0,再结合余弦函数的图象,求得x的范围.

解答 解:根据函数y=$\sqrt{cosx}$,可得cosx≥0,可得 2kπ-$\frac{π}{2}$≤x≤2kπ+$\frac{π}{2}$(k∈Z),
故函数的定义域为[2kπ-$\frac{π}{2}$,2kπ+$\frac{π}{2}$],k∈Z,
故答案为:[2kπ-$\frac{π}{2}$,2kπ+$\frac{π}{2}$],k∈Z.

点评 本题主要考查余弦函数的图象的特征,解三角不等式,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=ax2+bx+c,若f(1)=0,且a>b>c,求证:方程f(x)=0必有两个不等实数根.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知圆C的圆心在坐标原点,且过点M(1,$\sqrt{3}$).
(1)求圆C的方程;
(2)若点P是圆C上的动点,求点P到直线x+y-4=0的距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.甲设计了一个摸奖游戏,在一个口袋中装有同样大小的10个球,分别标有数字0,1,2,…9这十个数字,摸奖者交5元钱可参加一回摸球活动,一回摸球活动的规则是:摸奖者在摸球前先随机确定(预报)3个数字,然后开始在袋中不放回地摸3次球,每次摸一个,摸得3个球的数字与预先所报数字均不相同的奖1元,有1个数字相同的奖2元,2个数字相同的奖10元,3个数字相同的奖50元,设ξ为摸奖者一回所得奖金数,求ξ的分布列和摸奖人获利的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若f(x)是以2为周期的函数,且f(2)=2,则f(-4)=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知x≥1,求函数y=2x2+$\frac{a}{{x}^{2}}$-2(a>0)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.求下列各式中的x值:
(1)${log}_{\sqrt{2}}$x=1-${log}_{\sqrt{3}}$$\sqrt{3}$;
(2)lgx=1-1g5;
(3)log3(x+1)=2;
(4)1nx=2lna-3lnb.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.过双曲线的焦点F1的直线与该双曲线的同一支相交于A,B两点,|AB|=m,另一个焦点为F2,则△ABF2的周长为(  )
A.4aB.4a-mC.4a+2mD.4a-2m

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.作出下列各角的正弦线,余弦线,正切线:
(1)$\frac{π}{3}$;
(2)$\frac{5π}{6}$;
(3)-$\frac{2π}{3}$;
(4)-$\frac{13π}{6}$.

查看答案和解析>>

同步练习册答案