精英家教网 > 高中数学 > 题目详情

【题目】已知O为坐标原点,F是椭圆C: =1(a>b>0)的左焦点,A,B分别为C的左,右顶点.P为C上一点,且PF⊥x轴,过点A的直线l与线段PF交于点M,与y轴交于点E.若直线BM经过OE的中点,则C的离心率为(  )
A.
B.
C.
D.

【答案】A
【解析】解:由题意可设F(﹣c,0),A(﹣a,0),B(a,0),令x=﹣c,代入椭圆方程可得y=±b ,可得P(﹣c, ),
设直线AE的方程为y=k(x+a),
令x=﹣c,可得M(﹣c,k(a﹣c)),令x=0,可得E(0,ka),
设OE的中点为H,可得H(0, ),
由B,H,M三点共线,可得kBH=kBM
即为 = ,化简可得 = ,即为a=3c,可得e= =
故选:A.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下列推理过程不是演绎推理的是( )

①一切奇数都不能被2整除,2019是奇数,2019不能被2整除;

②由“正方形面积为边长的平方”得到结论:正方体的体积为棱长的立方;

③在数列中,,由此归纳出的通项公式;

④由“三角形内角和为”得到结论:直角三角形内角和为.

A. ①② B. ③④ C. ②③ D. ②④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数 为正实数

1)当时,求曲线在点处的切线方程;

2求证:

3)若函数且只有零点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在( n的展开式中,第6项为常数项.
(1)求n;
(2)求含x2项的系数;
(3)求展开式中所有的有理项.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设F1,F2分别为椭圆C

(1)若椭圆C上的点

(2)设点K是(1)中所得椭圆上的动点,求线段F1K的中点的轨迹方程;

(3)已知椭圆具有性质:若M,N是椭圆C上关于原点对称的两个点,点P是椭圆上任意一点,当直线PM,PN的斜率都存在,并记为kPM,kPN时,那么kPM与kPN之积是与点P位置无关的定值,试写出双曲

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图为某班35名学生的投篮成绩(每人投一次)的条形统计图,其中上面部分数据破损导致数据不完全。已知该班学生投篮成绩的中位数是5,则根据统计图,则下列说法错误的是( )

A. 3球以下(含3球)的人数为10

B. 4球以下(含4球)的人数为17

C. 5球以下(含5球)的人数无法确定

D. 5球的人数和6球的人数一样多

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业甲,乙两个研发小组,他们研发新产品成功的概率分别为,现安排甲组研发新产品,乙组研发新产品.设甲,乙两组的研发是相互独立的.

(1)求至少有一种新产品研发成功的概率;

(2)若新产品研发成功,预计企业可获得万元,若新产品研发成功,预计企业可获得利润万元,求该企业可获得利润的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点P(﹣1,4)及圆C:(x﹣2)2+(y﹣3)2=1.则下列判断正确的序号为
①点P在圆C内部;
②过点P做直线l,若l将圆C平分,则l的方程为x+3y﹣11=0;
③过点P做直线l与圆C相切,则l的方程为y﹣4=0或3x+4y﹣13=0;
④一束光线从点P出发,经x轴反射到圆C上的最短路程为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校准备从高一年级的两个男生和三个女生中选择2个人去参加一项比赛.

(1)若从这5个学生中任选2个人,求这2个人都是女生的概率;

(2)若从男生和女生中各选1个人,求这2个人包括,但不包括的概率.

查看答案和解析>>

同步练习册答案