精英家教网 > 高中数学 > 题目详情

【题目】在长方体ABCDA1B1C1D1中,AA12AB2AD4,过AA1作平面α使BDα,且平面α平面A1B1C1D1lMl.下面给出了四个命题:这四个命题中,真命题的个数为(

lAC

BMAC

lAD1所成的角为60°

④线段BM长度的最小值为.

A.1B.2C.3D.4

【答案】A

【解析】

①由ABCDA1B1C1D1为长方体,可得BD⊥平面A1ACC1,可得面A1ACC1为平面α,再判断;②结合①根据底面是正方形判断.③利用异面直线所成的角的定义判断.④利用垂线段最短,当MA1C1的中点时求解判断.

如图所示:

ABCDA1B1C1D1为长方体,可得BD⊥平面A1ACC1

即平面A1ACC1为平面α,直线A1C1l,则lAC,故①正确;

Ml,即MA1C1,只有当MA1C1的中点时,有BMAC

Ml上其它位置时,BMAC不垂直,故②错误;

AD1BC1,可知∠A1C1B即为lAD1所成角,

A1BBC1A1C1,∴∠A1C1B≠60°,故③错误;

A1BBC1,可知当MA1C1的中点时,BMA1C1

此时线段BM取得最小值,且BM,∴④错误.

故只有①正确.

故选:A.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆与过其右焦点F10)的直线交于不同的两点AB,线段AB的中点为D,且直线l与直线OD的斜率之积为.

1)求C的方程;

2)设椭圆的左顶点为MkMAkMB分别表示直线MAMB的斜率,求证.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2019年春节期间,我国高速公路继续执行节假日高速公路免费政策某路桥公司为掌握春节期间车辆出行的高峰情况,在某高速公路收费点记录了大年初三上午9:20~10:40这一时间段内通过的车辆数,统计发现这一时间段内共有600辆车通过该收费点,它们通过该收费点的时刻的频率分布直方图如下图所示,其中时间段9:20~9:40记作区间9:40~10:00记作10:00~10:20记作10:20~10:40记作.例如:1004分,记作时刻64.

1)估计这600辆车在9:20~10:40时间段内通过该收费点的时刻的平均值(同一组中的数据用该组区间的中点值代表);

2)为了对数据进行分析,现采用分层抽样的方法从这600辆车中抽取10辆,再从这10辆车中随机抽取4辆,设抽到的4辆车中,在9:20~10:00之间通过的车辆数为X,求X的分布列与数学期望;

3)由大数据分析可知,车辆在每天通过该收费点的时刻T服从正态分布,其中可用这600辆车在9:20~10:40之间通过该收费点的时刻的平均值近似代替,可用样本的方差近似代替(同一组中的数据用该组区间的中点值代表),已知大年初五全天共有1000辆车通过该收费点,估计在9:46~10:40之间通过的车辆数(结果保留到整数).

参考数据:若,则.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,将曲线方程,先向左平移2个单位,再向上平移2个单位,得到曲线C.

1)点Mxy)为曲线C上任意一点,写出曲线C的参数方程,并求出的最大值;

2)设直线l的参数方程为,(t为参数),又直线l与曲线C的交点为EF,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求过线段EF的中点且与l垂直的直线的极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,矩形ABCD中,EF分别为ADAB中点,M为线段BC上的一个动点,现将,分别沿ECEF折起,使AD重合于点P.设PM与平面BCEF所成角为,二面角的平面角为,二面角的平面角为,则(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知平面平面为等边三角形,的中点.

1)求证:平面平面

2)求直线和平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,曲线C的参数方程为θ为参数),在以O为极点,x轴的正半轴为极轴的极坐标系中,直线lm为常数).

1)求曲线C的普通方程与直线l的直角坐标方程;

2)若直线l与曲线C相交于AB两点,当|AB|=4时,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数(aR),其中e为自然对数的底数.

1)若,求函数的单调减区间;

2)若函数的定义域为R,且,求a的取值范围;

3)证明:对任意,曲线上有且仅有三个不同的点,在这三点处的切线经过坐标原点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】实现国家富强.民族复兴.人民幸福是“中国梦”的本质内涵.某商家计划以“全民健身促健康,同心共筑中国梦”为主题举办一次有奖消费活动,此商家先把某品牌乒乓球重新包装,包装时在每个乒乓球上印上“中”“国”“梦”三个字样中的一个,之后随机装盒(14个球),并规定:若顾客购买的一盒球印的是同一个字,则此顾客获得一等奖;若顾客购买的一盒球集齐了“中”“国”二字且仅有此二字,则此顾客获得二等奖;若顾客购买的一盒球集齐了“中”“国”“梦”三个字,则此顾客获得三等奖,其它情况不设奖,则顾客购买一盒乒乓球获奖的概率是_____________.

查看答案和解析>>

同步练习册答案