精英家教网 > 高中数学 > 题目详情

【题目】【2017重庆二诊】“微信运动”已成为当下热门的健身方式,小王的微信朋友圈内也有大量好友参与了“微信运动”,他随机选取了其中的40人(男、女各20人),记录了他们某一天的走路步数,并将数据整理如下:

(1)已知某人一天的走路步数超过8000步被系统评定“积极型”,否则为“懈怠型”,根据题意完成下面的列联表,并据此判断能否有95%以上的把握认为“评定类型”与“性别”有关?

附:

0.10

0.05

0.025

0.010

2.706

3.841

5.024

6.635

(2)若小王以这40位好友该日走路步数的频率分布来估计其所有微信好友每日走路步数的概率分布,现从小王的所有微信好友中任选2人,其中每日走路不超过5000步的有人,超过10000步的有人,设,求的分布列及数学期望.

【答案】(Ⅰ)没有95%以上的把握认为二者有关;(Ⅱ)由见解析.

【解析】【试题分析】(1)依据题设条件做成2×2列联表,计算出卡方系数,再与参数进行比对,做出判断;(2)先求随机变量的分布列,再运用随机变量的数学期望公式计算求解:

(Ⅰ)

积极型

懈怠型

总计

14

6

20

8

12

20

总计

22

18

40

,故没有95%以上的把握认为二者有关;

(Ⅱ)由题知,小王的微信好友中任选一人,其每日走路步数不超过5000步的概率为,超过10000步的概率为,且当时, ;当

时, ;当时,

,即的分布列为:

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若函数满足:对于任意正数,都有,且,则称函数为“L函数”.

1)试判断函数是否是“L函数”;

2)若函数为“L函数”,求实数a的取值范围;

(3)若函数L函数,且,求证:对任意,都有

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,直线的参数方程为为参数),在极坐标系(与直角坐标系取相同的长度单位,且以原点为极点,以轴正半轴为极轴)中,圆的方程为.

(1)求圆的直角坐标方程;

(2)设圆与直线交于点,若点的坐标为,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【2017安徽淮南二模】随着社会发展,淮北市在一天的上下班时段也出现了堵车严重的现象.交通指数是交通拥堵指数的简称,是综合反映道路网畅通或拥堵的概念.记交通指数为T,其范围为[0,10],分别有5个级别:T∈[0,2)畅通;T∈[2,4)基本畅通;T∈[4,6)轻度拥堵;T∈[6,8)中度拥堵;T∈[8,10]严重拥堵.早高峰时段(T≥3 ),从淮北市交通指挥中心随机选取了一至四马路之间50个交通路段,依据交通指数数据绘制的直方图如图所示:

(I)据此直方图估算交通指数T∈[4,8)时的中位数和平均数;

(II)据此直方图求出早高峰一至四马路之间的3个路段至少有2个严重拥堵的概率是多少?

(III)某人上班路上所用时间若畅通时为20分钟,基本畅通为30分钟,轻度拥堵为35分钟,中度拥堵为45分钟,严重拥堵为60分钟,求此人用时间的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,△ABC的顶点都在圆O上,点P在BC的延长线上,且PA与圆O切于点A.

(1)若∠ACB=70°,求∠BAP的度数;
(2)若 = ,求 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某生态园将一三角形地块ABC的一角APQ开辟为水果园,种植桃树,已知角A为120°.现在边界AP,AQ处建围墙,PQ处围栅栏.

(1)若∠APQ=15°,AP与AQ两处围墙长度和为100( +1)米,求栅栏PQ的长;
(2)已知AB,AC的长度均大于200米,若水果园APQ面积为2500 平方米,问AP,AQ长各为多少时,可使三角形APQ周长最小?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sn , 且Sn= +
(1)求数列{an}的通项公式;
(2)若数列{bn}满足bn=an+2﹣an+ ,且数列{bn}的前n项和为Tn , 求证:Tn<2n+

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知直四棱柱ABCD﹣A1B1C1D1的底面ABCD为菱形,且∠BCD=60°,P为AD1的中点,Q为BC的中点

(1)求证:PQ∥平面D1DCC1
(2)求证:DQ⊥平面B1BCC1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某制造厂商10月份生产了一批乒乓球,从中随机抽取n个进行检查,测得每个球的直径(单位:mm),将数据进行分组,得到如表频率分布表:

分组

频数

频率

[39.95,39.97)

6

P1

[39.97,39.99)

12

0.20

[39.99,40.01)

a

0.50

[40.01,40.03)

b

P2

合计

n

1.00


(1)求a、b、n及P1、P2的值,并画出频率分布直方图(结果保留两位小数);

(2)已知标准乒乓球的直径为40.00mm,直径误差不超过0.01mm的为五星乒乓球,若这批乒乓球共有10000个,试估计其中五星乒乓球的数目;
(3)统计方法中,同一组数据常用该组区间的中点值(例如区间[39.99,40.01)的中点值是40.00)作为代表,估计这批乒乓球直径的平均值和中位数.

查看答案和解析>>

同步练习册答案